Two-dimensional (2D) van der Waals heterostructures have attracted a lot of attention due to their interesting physical properties and low dimensionality. They provide a platform for theoretical investigations in physics and for the realization of the next generation of highly integrated nanoelectronic devices. The combinations of 2D materials are virtually limitless in heterostructures, given the myriad of discovered 2D materials of different electronic properties. Moreover, 2D semiconductor materials could be encapsulated in insulating and screening 2D materials, greatly enhancing their electronic properties. Heterostructures could, therefore, enable the preservation of the intrinsic properties of single-layered 2D semiconductor materials, making it advantageous to encapsulate the 2D semiconductor layers of interest in other 2D materials free of dangling bonds. This work explores how the 2D heterostructures can be utilized both for fundamental investigations in optoelectronics and for the realization of complementary inverters. Fundamental investigations in optics involving 2D materials often require specific structures exhibiting near-ideal conditions, as these materials are very sensitive to the surrounding environment. Passive circuit elements in the device could also affect the outcome of the measurements. A proper isolation of 2D materials is fundamental. An hBN/graphene/hBN van der Waals heterostructure was used for the realization of graphene photoelectronic Corbino field-effect transistors (FETs). The exchange of the orbital angular momentum from a vortex light beam to electrons in quantum Hall states of the encapsulated graphene flake was demonstrated. 2D materials offer a solution to overcome the problems related to the downscaling of FETs in semiconductor technology. Leveraging the low dimensionality of 2D FETs allows for the suppression of short channel effects and higher scale integration. The latter can be achieved by stacking the 2D devices in the third dimension. All-2D material complementary inverters were fabricated and electrically characterized. Exhibiting the required logic inversion, they provide a platform for the downscaling of logic gates.
Le eterostrutture van der Waals (vdW) di materiali bidimensionali (2D) hanno attirato molta attenzione grazie alle loro interessanti proprietà fisiche e bassa dimensionalità. Le combinazioni di materiali 2D in eterostrutture sono virtualmente illimitate, date le miriadi di materiali 2D scoperti, ognuno con diverse proprietà elettroniche. Inoltre, i semiconduttori 2D possono essere incapsulati in materiali 2D isolanti, schermanti e privi di legami pendenti, migliorando notevolmente proprietà elettroniche degli stessi. La fabbricazione di queste eterostrutture vdW risulta dunque vantaggiosa per i semiconduttori 2D: consente di conservarne le proprietà intrinseche. Questo lavoro esplora come le eterostrutture 2D possano essere utilizzate sia per indagini fondamentali in optoelettronica, sia per la realizzazione di inverter complementari. Indagini fondamentali in optoelettronica con materiali 2D richiedono spesso strutture che presentino condizioni quasi ideali, poiché questi materiali sono molto sensibili all'ambiente circostante. Un adeguato isolamento dei materiali 2D è quindi fondamentale. In questo lavoro, eterostrutture van der Waals composte da hBN/grafene/hBN, sono state utilizzate per la realizzazione di transistor a effetto campo (FET) che sfruttano l’effetto Corbino nell’interazione con vortice ottico. È stata dimostrata la trasmissione del momento angolare orbitale da un vortice ottico agli elettroni negli stati Hall quantistici del grafene incapsulato. I materiali 2D offrono, inoltre, una soluzione ai problemi legati alla riduzione delle dimensioni dei FET in micro e nanoelettroncia. Sfruttare la bassa dimensionalità dei semiconduttori 2D, consente di sopprimere gli effetti di canale corto nei FET e di ottenere una maggiore densità di integrazione. Quest'ultima può essere raggiunta sviluppando i FET 2D nella terza dimensione. In questo lavoro sono stati fabbricati e caratterizzati elettricamente inverter complementari costituiti da eterostrutture vdW 2D. La corretta inversione logica ottenuta evidenzia apre le porte a soluzioni per una maggiore integrazione dei transistor.
Layered 2D material heterostructures for applications in photo and integrated electronics
Paithankar, Nikil
2023/2024
Abstract
Two-dimensional (2D) van der Waals heterostructures have attracted a lot of attention due to their interesting physical properties and low dimensionality. They provide a platform for theoretical investigations in physics and for the realization of the next generation of highly integrated nanoelectronic devices. The combinations of 2D materials are virtually limitless in heterostructures, given the myriad of discovered 2D materials of different electronic properties. Moreover, 2D semiconductor materials could be encapsulated in insulating and screening 2D materials, greatly enhancing their electronic properties. Heterostructures could, therefore, enable the preservation of the intrinsic properties of single-layered 2D semiconductor materials, making it advantageous to encapsulate the 2D semiconductor layers of interest in other 2D materials free of dangling bonds. This work explores how the 2D heterostructures can be utilized both for fundamental investigations in optoelectronics and for the realization of complementary inverters. Fundamental investigations in optics involving 2D materials often require specific structures exhibiting near-ideal conditions, as these materials are very sensitive to the surrounding environment. Passive circuit elements in the device could also affect the outcome of the measurements. A proper isolation of 2D materials is fundamental. An hBN/graphene/hBN van der Waals heterostructure was used for the realization of graphene photoelectronic Corbino field-effect transistors (FETs). The exchange of the orbital angular momentum from a vortex light beam to electrons in quantum Hall states of the encapsulated graphene flake was demonstrated. 2D materials offer a solution to overcome the problems related to the downscaling of FETs in semiconductor technology. Leveraging the low dimensionality of 2D FETs allows for the suppression of short channel effects and higher scale integration. The latter can be achieved by stacking the 2D devices in the third dimension. All-2D material complementary inverters were fabricated and electrically characterized. Exhibiting the required logic inversion, they provide a platform for the downscaling of logic gates.File | Dimensione | Formato | |
---|---|---|---|
2024_03_Paithankar.pdf
solo utenti autorizzati a partire dal 01/03/2027
Descrizione: PhD thesis Nikil Paithankar (971768)
Dimensione
11.19 MB
Formato
Adobe PDF
|
11.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217392