Hybrid systems are dynamical systems that incorporate behaviours that are typical of both continuous-time dynamical systems and discrete-time dynamical systems, so that the states of the system can flow and jump when governed by the continuous dynamics and by the discrete dynamics, respectively. The recent development of a comprehensive theory that allows to integrate continuous-time and discrete-time dynamical systems in a unified manner provides a unifying modelling language that eases its application to many engineering control problems. Among different engineering fields, hybrid systems theory provides innovative solutions for aerospace control problems. This thesis presents the advantages of the application of the hybrid control theory to problems related to Unmanned Aerial Vehicles (UAVs). In the first part, the effectiveness of adopting a hybrid strategy for the complex problem of the Air-to-Air Automatic Landing (AAAL) of a small drone on the top of a larger one during flight is shown. In the second part, a hybrid supervisor that switches robustly between a local controller and a global controller is adopted to solve the trajectory tracking problem in the presence of constant or slowly varying disturbances for an underactuated Unmanned Aerial Vehicle (UAV).
I sistemi ibridi sono sistemi dinamici che incorporano comportamenti tipici sia dei sistemi dinamici a tempo continuo che dei sistemi dinamici a tempo discreto, in modo che gli stati del sistema possano fluire e saltare quando governati rispettivamente dalla dinamica continua e dalla dinamica discreta. Il recente sviluppo di una teoria che consente di integrare sistemi dinamici a tempo continuo e tempo discreto in modo unificato fornisce un linguaggio di modellazione che ne facilita l'applicazione a molti problemi di controllo ingegneristico. Tra i diversi campi dell'ingegneria, la teoria dei sistemi ibridi fornisce soluzioni innovative per problemi di controllo in campo aerospaziale. Questa tesi presenta i vantaggi dell'applicazione della teoria del controllo ibrido a problemi relativi ai veicoli aerei senza pilota. Nella prima parte viene mostrata l’efficacia dell’adozione di una strategia ibrida per il problema dell’atterraggio automatico aria-aria di un piccolo drone sopra uno più grande durante il volo. Nella seconda parte, viene adottato un supervisore ibrido che commuta in modo robusto tra un controllore locale e un controllore globale per risolvere il problema del tracciamento della traiettoria in presenza di disturbi costanti o lentamente variabili per un veicolo aereo sottoattuato senza pilota.
Hybrid control techniques for UAVs
GOZZINI, GIOVANNI
2023/2024
Abstract
Hybrid systems are dynamical systems that incorporate behaviours that are typical of both continuous-time dynamical systems and discrete-time dynamical systems, so that the states of the system can flow and jump when governed by the continuous dynamics and by the discrete dynamics, respectively. The recent development of a comprehensive theory that allows to integrate continuous-time and discrete-time dynamical systems in a unified manner provides a unifying modelling language that eases its application to many engineering control problems. Among different engineering fields, hybrid systems theory provides innovative solutions for aerospace control problems. This thesis presents the advantages of the application of the hybrid control theory to problems related to Unmanned Aerial Vehicles (UAVs). In the first part, the effectiveness of adopting a hybrid strategy for the complex problem of the Air-to-Air Automatic Landing (AAAL) of a small drone on the top of a larger one during flight is shown. In the second part, a hybrid supervisor that switches robustly between a local controller and a global controller is adopted to solve the trajectory tracking problem in the presence of constant or slowly varying disturbances for an underactuated Unmanned Aerial Vehicle (UAV).File | Dimensione | Formato | |
---|---|---|---|
2024_03_Gozzini.pdf
accessibile in internet per tutti a partire dal 04/03/2027
Dimensione
7.31 MB
Formato
Adobe PDF
|
7.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217494