The goal of this master’s thesis is to improve the modeling of positive displacement compressors within the Gasdyn software. In this sense, particular attention was given to the valves, which are undoubtedly among the most critical components regarding the correct functioning of the treated compressors. This work will deal with two types of valves, plate valves and reed valves, which are among the most widespread types in the field of operating machines. For each type of valve, a dynamic model was studied that was able to replicate the real trends of lift, pressure in the cylinder and speed in the discharge and intake ducts. As regards the plate valves, the modeling was implemented using three different methods: one analytical and two numerical, forward Euler and fourth order Runge-Kutta. Once the dynamic modeling had been implemented, it was possible to compare the results obtained with the experimental ones, for which inspiration was taken from another thesis work. A further comparison was made between the results of the three different methods used. As regards reed valves, however, the discussion is mainly theoretical, in which we have tried to make both the geometry of the reed itself and the results in numerical terms increasingly complex and faithful to reality. A first version was conceived thanks to the elastic line, which was improved thanks to a dynamic model that took into account not only the rigidity of the reed but also the damping and inertia. This last characterization is particularly close to the behavior of reed valves for two-stroke internal combustion engines. The next step was to more realistically describe the geometry of the reed, which thus becomes a variable section to get closer to the real one present in compressors, and the load, which no longer acts on the entire reed but only on a small portion of it, whose surface corresponds to that of the duct from which the inlet or outlet flow comes. Finally, the results of the more simplified models followed, since the more complex ones are still being developed.
L’obiettivo di questa tesi è migliorare la modellazione dei compressori volumetrici all’interno del software Gasdyn. In questo senso, particolare attenzione è stata data alle valvole, le quali sono senza dubbio tra i componenti più critici per quanto riguarda il corretto funzionamento dei compressori trattati. In questo lavoro verranno trattati due tipi di valvole, quelle a piattello e quelle a lamelle, che sono tra le tipologie più diffuse nell’ambito delle macchine operatrici. Per ogni tipo di valvola è stato studiato un modello dinamico che fosse in grado di replicare gli andamenti reali di alzata, pressione nel cilindro e velocità nei condotti di mandata e aspirazione. Per quanto riguarda le valvole a piattello, la modellazione è stata poi implementata usando tre metodi diversi: uno analitico e due numerici, Eulero in avanti e Runge-Kutta del quarto ordine. Una volta implementata la modellizzazione dinamica, è stato possibile confrontare i risultati ottenuti con quelli sperimentali, per i quali è stato preso spunto da un altro lavoro di tesi. Un ulteriore confronto è stato fatto tra i risultati dei tre diversi metodi usati. Per quanto riguarda le valvole a lamelle invece, la trattazione è prevalentemente teorica, nella quale si è cercato di rendere sempre più complesso e fedele alla realtà sia la geometria della lamella stessa che i risultati in termini numerici. Una prima versione è stata concepita grazie alla linea elastica, la quale è stata migliorata grazie ad un modello dinamico che teneva conto non solo della rigidezza della lamella ma anche dello smorzamento e dell’inerzia. Quest’ultima caratterizzazione risulta particolarmente vicina al comportamento delle valvole a lamelle per motori a combustione interna a due tempi. Il passo successivo è stato descrivere più realisticamente la geometria della lamella, che diventa così a sezione variabile per avvicinarsi a quella reale presente nei compressori, e il carico, che non agisce più sull’intera lamella ma solo su una piccola porzione di essa, la cui superficie corrisponde a quella del condotto dalla quale proviene il flusso in ingresso o uscita. Sono infine riportati i risultati dei modelli più semplificati, in virtù del fatto che quelli più complessi sono ancora in via di sviluppo.
1D simulation of reciprocating piston compressors: new models and validation
MIGLIORINI, RICCARDO
2022/2023
Abstract
The goal of this master’s thesis is to improve the modeling of positive displacement compressors within the Gasdyn software. In this sense, particular attention was given to the valves, which are undoubtedly among the most critical components regarding the correct functioning of the treated compressors. This work will deal with two types of valves, plate valves and reed valves, which are among the most widespread types in the field of operating machines. For each type of valve, a dynamic model was studied that was able to replicate the real trends of lift, pressure in the cylinder and speed in the discharge and intake ducts. As regards the plate valves, the modeling was implemented using three different methods: one analytical and two numerical, forward Euler and fourth order Runge-Kutta. Once the dynamic modeling had been implemented, it was possible to compare the results obtained with the experimental ones, for which inspiration was taken from another thesis work. A further comparison was made between the results of the three different methods used. As regards reed valves, however, the discussion is mainly theoretical, in which we have tried to make both the geometry of the reed itself and the results in numerical terms increasingly complex and faithful to reality. A first version was conceived thanks to the elastic line, which was improved thanks to a dynamic model that took into account not only the rigidity of the reed but also the damping and inertia. This last characterization is particularly close to the behavior of reed valves for two-stroke internal combustion engines. The next step was to more realistically describe the geometry of the reed, which thus becomes a variable section to get closer to the real one present in compressors, and the load, which no longer acts on the entire reed but only on a small portion of it, whose surface corresponds to that of the duct from which the inlet or outlet flow comes. Finally, the results of the more simplified models followed, since the more complex ones are still being developed.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Migliorini_Thesis_01.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
7.57 MB
Formato
Adobe PDF
|
7.57 MB | Adobe PDF | Visualizza/Apri |
2024_04_Migliorini_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.57 MB
Formato
Adobe PDF
|
1.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217495