This thesis will describe the work done to create vapor cells with a new fabrication technology. Vapor cells are the core element of atomic clocks and optically pumped magnetometers (OPMs). Their main purpose is to contain a hot vapor of alkali atoms, while still allowing optical access to them, at different wavelengths. Till now, these cells have been mainly fabricated through glass-blowing or MEMs technologies, with severe limitations to their size, versatility and optical access. We propose here the use of femtosecond laser writing, followed by chemical etching (FLICE), to create cells with desired 3D geometries and sizes inside slabs of fused silica glass; these cells will be called LWVCs (laser-written vapor cells) throughout the work. After describing the fabrication process, an insight into the filling and sealing techniques developed to create LWVCs and their future perspectives will be given. Another aim of the work is the realization of a completely optically integrated OPM; for this reason, the first integration tests and results realized on LWVCs are also reported here. These preliminary results are followed by an outlook on their future developments and the strategies that can be adopted to improve them. The last part of the thesis will report the techniques utilized to characterize the produced LWVCs and the results achieved in terms of their sensitivity during magnetometry tests. The conclusions will follow.
In questa tesi, viene presentato il lavoro svolto per creare celle di vapore tramite una nuova tecnologia di fabbricazione. Queste celle di vapore sono l’elemento principale di orologi atomici e magnetometri basati su gas di atomi caldi (atomi a temperatura uguale o maggiore della temperature ambiente). Fino ad oggi, queste celle di vapore sono state principalmente fabbricate tramite tecnologie glass-blowing o MEMs, con serie limitazioni per quanto riguarda le loro dimensioni, versatilità e accesso ottico. In questo lavoro viene proposto l’utilizzo della scrittura laser a femtosecondi, seguita da etching chimico (FLICE), come tecnologia alternativa per creare celle di vapore con geometrie 3D di forma e dimensioni desiderate. Le celle vengono realizzate all’interno di lastre monolitiche di vetro (fused silica). Dopo aver desctritto l’intero processo di fabbricazione nei dettagli, verranno presentate anche le tecniche di riempimento e chiusura delle camere di vapore e le loro future prospettive di sviluppo. Nei capitoli successivi, varranno presentate anche alcune tecniche di integrazione, testate per realizzare dispositivi compatti, unendo le camere di vapore con altre componenti ottiche miniaturizzate e fibre ottiche; verrà presentato anche un breve outlook sulle possibilità future di questa tecnica. L’ultima parte di questo lavoro introdurrà le tecniche utilizzate per caratterizzare le celle prodotte e i risultati ottenuti durante i test di misurazione di campi magnetici, operando le celle di vapore come elemento principale di OPMs (optically pumped magnetometers).
Laser written vapor cells (LWVC) : design, fabrication and characterization of LWVC for OPM
ZANONI, ANDREA
2023/2024
Abstract
This thesis will describe the work done to create vapor cells with a new fabrication technology. Vapor cells are the core element of atomic clocks and optically pumped magnetometers (OPMs). Their main purpose is to contain a hot vapor of alkali atoms, while still allowing optical access to them, at different wavelengths. Till now, these cells have been mainly fabricated through glass-blowing or MEMs technologies, with severe limitations to their size, versatility and optical access. We propose here the use of femtosecond laser writing, followed by chemical etching (FLICE), to create cells with desired 3D geometries and sizes inside slabs of fused silica glass; these cells will be called LWVCs (laser-written vapor cells) throughout the work. After describing the fabrication process, an insight into the filling and sealing techniques developed to create LWVCs and their future perspectives will be given. Another aim of the work is the realization of a completely optically integrated OPM; for this reason, the first integration tests and results realized on LWVCs are also reported here. These preliminary results are followed by an outlook on their future developments and the strategies that can be adopted to improve them. The last part of the thesis will report the techniques utilized to characterize the produced LWVCs and the results achieved in terms of their sensitivity during magnetometry tests. The conclusions will follow.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis___Andrea_Zanoni_final.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Final version of the PhD thesis
Dimensione
15.14 MB
Formato
Adobe PDF
|
15.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217499