Photonic integrated circuits (PICs) aid the implementation of quantum information processing and quantum communication protocols with significantly higher complexity, scalability and optical stability when compared to bulk optical implementations. Amongst the various photonic platforms, Femtosecond laser writing (FLW) represents a versatile technology for rapid and cost-effective fabrication of PICs with 3D geometries. Universal photonic processors (UPPs) are PICs featuring a mesh of programmable Mach-Zehnder interferometers (MZIs) that can implement arbitrary transformations on the input signal, allowing for the implementation of multiple different transformations with the same chip. Programmability in UPPs is commonly implemented by means of thermo-optic phase shifters (TOPSs) because they are relatively easy to fabricate in most platforms and do not induce additional optical losses. Growing interest in these processors in recent years has brought significant improvements, particularly in terms of optical losses and number of optical modes in multiple photonic platforms, which have led to the demonstration of large UPPs with up to 20 modes and hundreds of TOPSs. As of the start of this thesis, however, the largest UPP demonstrated in the FLW platform was a 4-mode circuit on which proper universal control had not been demonstrated. This work starts with the demonstration of multiple 6-mode FLW UPPs featuring thermal isolation trenches that allow for low-power dissipation phase shifting (tens instead of hundreds of mW for a 2π phase shift). Then, a custom calibration procedure has been developed for these processors. This calibration is based entirely on optical power measurements, works for FLW UPPs of any size featuring a rectangular MZI mesh configuration, and has been demonstrated by calibrating two 6-mode FLW UPPs operating at wavelengths of 785 and 1550 nm and subsequently implementing hundreds of Haar random transformations with high fidelity (>0.997). Additionally, a simple optimization procedure was demonstrated on a few individual unitary transformations, all resulting in fidelities higher than 0.9995. The polarization insensitivity of these circuits was demonstrated to showcase another advantage of the FLW fabrication process, and finally, the implementation of a modular Quantum-to-Quantum Bernoulli factory was presented as an example of the use of these UPPs for quantum information processing. After this, the focus shifted on the TOPSs fabrication process. This has so far been based on a single gold film technology that, while versatile and simple to implement, imposed severe limitations on circuit complexity. In particular, the 6-mode UPPs featuring 30 TOPSs were close to the upper limit of this technology. To overcome this limitation, a new technology based on a dual-film photolithographic fabrication process was developed for TOPSs. The development of this new technology was not straightforward, mainly due to the requirement of compatibility with thermal isolation structures. Despite this, a full recipe was successfully optimized with chromium and copper used respectively as resistive microheaters and conductive interconnections. They were employed together with compact MZI cells with curved trenches (that were developed in a parallel project) for the fabrication of an 8-mode UPP featuring a total of 56 TOPSs, which is currently the largest UPP demonstrated in the FLW platform featuring a demonstration of universal reconfiguration. All of the improvements to the TOPSs and waveguide fabrication processes allowed us to achieve an 8-mode processor with the same chip length as the 6-mode one, with the same total insertion losses and featuring more stable and compact TOPSs without compromising on their performance. In summary, this work introduced a novel calibration process for FLW UPPs and demonstrated it with high fidelity control of 6- and 8-mode UPPs operating at multiple wavelengths. At the same time, it showcased ultra-high fidelity with single unitary optimization, demonstrated the processors' polarization insensitivity, and presented one of the quantum experiments performed on these UPPs. Finally, the limits of the current TOPS fabrication process employed in FLW PICs were explored and overcome, leading to the successful demonstration of the largest FLW UPP to date and opening up for the first time the possibility of fabricating 12- and even 20-mode FLW UPPs in the near future.
I circuiti integrati fotonici (PIC) supportano l'implementazione di protocolli per l'elaborazione dell'informazione quantistica e la comunicazione quantistica con una complessità, scalabilità e stabilità ottica significativamente superiori rispetto alle implementazioni ottiche tradizionali. Tra le varie piattaforme fotoniche, la scrittura laser a femtosecondi (FLW) rappresenta una tecnologia versatile per la fabbricazione rapida ed economica di PIC con geometrie 3D. I processori fotonici universali (UPP) sono PIC che presentano una rete di interferometri di Mach-Zehnder programmabili (MZI) in grado di implementare trasformazioni arbitrarie sul segnale di ingresso, consentendo l'implementazione di molteplici trasformazioni diverse con lo stesso chip. La programmabilità negli UPP è comunemente realizzata mediante modulatori di fase termo-ottici (TOPS) perché sono relativamente facili da fabbricare nella maggior parte delle piattaforme e non inducono perdite ottiche aggiuntive. L'interesse crescente per questi processori negli ultimi anni ha portato a significativi miglioramenti, in particolare in termini di perdite ottiche e numero di modi ottici in molteplici piattaforme fotoniche, che hanno portato alla dimostrazione di grandi UPP con fino a 20 modi e centinaia di TOPS. Tuttavia, all'inizio di questa tesi, il più grande UPP dimostrato nella piattaforma FLW era un circuito a 4 modi su cui non era stato dimostrato un controllo universale adeguato. Questo lavoro inizia con la dimostrazione di più UPP FLW a 6 modi caratterizzati da trincee di isolamento termico che permettono uno sfasamento a bassa dissipazione di potenza (decine invece di centinaia di mW per uno sfasamento di 2π). Successivamente, è stata sviluppata una procedura di calibrazione personalizzata per questi processori. Questa calibrazione si basa interamente su misurazioni della potenza ottica, funziona per UPP fabbricati mediante FLW di qualsiasi dimensione che presentano una topologia rettangolare, ed è stata dimostrata calibrando due UPP a 6 modi che operano a lunghezze d'onda di 785 e 1550 nm e implementando successivamente centinaia di trasformazioni Haar random con alta fedeltà (>0.997). Inoltre, è stata dimostrata una semplice procedura di ottimizzazione su alcune trasformazioni unitarie individuali, tutte risultanti in fedeltà superiori a 0.9995. L'insensibilità alla polarizzazione di questi circuiti è stata dimostrata per evidenziare un altro vantaggio del processo di fabbricazione FLW, e infine, è stata presentata l'implementazione di una Quantum-to-Quantum Bernoulli factory modulare come esempio dell'uso di questi UPP per l'elaborazione dell'informazione quantistica. Successivamente, l'attenzione si è spostata sul processo di fabbricazione dei TOPS. Finora, questo è stato basato su una tecnologia a singolo film d'oro che, pur essendo versatile e semplice da implementare, ha imposto gravi limitazioni sulla complessità del circuito. In particolare, gli UPP a 6 modi che presentano 30 TOPS erano vicini al limite superiore di questa tecnologia. Per superare questa limitazione, è stata sviluppata una nuova tecnologia basata su un processo di fabbricazione fotolitografica a doppio film per i TOPS. Lo sviluppo di questa nuova tecnologia non è stato semplice, principalmente a causa della necessità di compatibilità con le strutture di isolamento termico. Nonostante ciò, una ricetta completa è stata ottimizzata con successo, utilizzando cromo e rame rispettivamente come micro-riscaldatori resistivi e interconnessioni conduttive. Questi sono stati impiegati insieme a celle MZI compatte con trincee curve (che sono state sviluppate in un progetto parallelo) per la fabbricazione di un UPP a 8 modi con un totale di 56 TOPS, che attualmente è il più grande UPP dimostrato nella piattaforma FLW con annessa dimostrazione di riconfigurazione universale. Tutti i miglioramenti ai processi di fabbricazione dei TOPS e delle guide d'onda ci hanno permesso di ottenere un processore a 8 modi con la stessa lunghezza del chip di quello a 6 modi, con le stesse perdite di inserzione totali e presentando TOPS più stabili e compatti senza compromettere le loro prestazioni. In sintesi, questo lavoro ha introdotto un nuovo processo di calibrazione per gli UPP FLW e lo ha dimostrato con un controllo ad alta fedeltà di UPP a 6 e 8 modi operanti a più lunghezze d'onda. Allo stesso tempo, ha mostrato ultra-alta fedeltà con singola ottimizzazione unitaria, ha dimostrato l'insensibilità alla polarizzazione dei processori e ha presentato uno degli esperimenti quantistici eseguiti su questi UPP. Infine, sono stati esplorati e superati i limiti del processo di fabbricazione TOPS corrente impiegato nei PIC FLW, portando alla dimostrazione di successo del più grande UPP FLW fino ad oggi e aprendo per la prima volta la possibilità di fabbricare UPP FLW a 12 e persino 20 modi nel prossimo futuro.
Femtosecond laser written universal photonic processors
PENTANGELO, CIRO
2023/2024
Abstract
Photonic integrated circuits (PICs) aid the implementation of quantum information processing and quantum communication protocols with significantly higher complexity, scalability and optical stability when compared to bulk optical implementations. Amongst the various photonic platforms, Femtosecond laser writing (FLW) represents a versatile technology for rapid and cost-effective fabrication of PICs with 3D geometries. Universal photonic processors (UPPs) are PICs featuring a mesh of programmable Mach-Zehnder interferometers (MZIs) that can implement arbitrary transformations on the input signal, allowing for the implementation of multiple different transformations with the same chip. Programmability in UPPs is commonly implemented by means of thermo-optic phase shifters (TOPSs) because they are relatively easy to fabricate in most platforms and do not induce additional optical losses. Growing interest in these processors in recent years has brought significant improvements, particularly in terms of optical losses and number of optical modes in multiple photonic platforms, which have led to the demonstration of large UPPs with up to 20 modes and hundreds of TOPSs. As of the start of this thesis, however, the largest UPP demonstrated in the FLW platform was a 4-mode circuit on which proper universal control had not been demonstrated. This work starts with the demonstration of multiple 6-mode FLW UPPs featuring thermal isolation trenches that allow for low-power dissipation phase shifting (tens instead of hundreds of mW for a 2π phase shift). Then, a custom calibration procedure has been developed for these processors. This calibration is based entirely on optical power measurements, works for FLW UPPs of any size featuring a rectangular MZI mesh configuration, and has been demonstrated by calibrating two 6-mode FLW UPPs operating at wavelengths of 785 and 1550 nm and subsequently implementing hundreds of Haar random transformations with high fidelity (>0.997). Additionally, a simple optimization procedure was demonstrated on a few individual unitary transformations, all resulting in fidelities higher than 0.9995. The polarization insensitivity of these circuits was demonstrated to showcase another advantage of the FLW fabrication process, and finally, the implementation of a modular Quantum-to-Quantum Bernoulli factory was presented as an example of the use of these UPPs for quantum information processing. After this, the focus shifted on the TOPSs fabrication process. This has so far been based on a single gold film technology that, while versatile and simple to implement, imposed severe limitations on circuit complexity. In particular, the 6-mode UPPs featuring 30 TOPSs were close to the upper limit of this technology. To overcome this limitation, a new technology based on a dual-film photolithographic fabrication process was developed for TOPSs. The development of this new technology was not straightforward, mainly due to the requirement of compatibility with thermal isolation structures. Despite this, a full recipe was successfully optimized with chromium and copper used respectively as resistive microheaters and conductive interconnections. They were employed together with compact MZI cells with curved trenches (that were developed in a parallel project) for the fabrication of an 8-mode UPP featuring a total of 56 TOPSs, which is currently the largest UPP demonstrated in the FLW platform featuring a demonstration of universal reconfiguration. All of the improvements to the TOPSs and waveguide fabrication processes allowed us to achieve an 8-mode processor with the same chip length as the 6-mode one, with the same total insertion losses and featuring more stable and compact TOPSs without compromising on their performance. In summary, this work introduced a novel calibration process for FLW UPPs and demonstrated it with high fidelity control of 6- and 8-mode UPPs operating at multiple wavelengths. At the same time, it showcased ultra-high fidelity with single unitary optimization, demonstrated the processors' polarization insensitivity, and presented one of the quantum experiments performed on these UPPs. Finally, the limits of the current TOPS fabrication process employed in FLW PICs were explored and overcome, leading to the successful demonstration of the largest FLW UPP to date and opening up for the first time the possibility of fabricating 12- and even 20-mode FLW UPPs in the near future.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
89.5 MB
Formato
Adobe PDF
|
89.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217500