Researchers expend a considerable amount of time and effort to retrieve data from online social networks. With the diversity and the vast amount of information shared on online social networks today, different crawlers have been designed to capture several types of information. We have created a new crawler. This crawler exhibits significant distinctions from other existing crawlers in terms of efficiency and crawling depth. We are receiving all interactions pertaining to every single post. Furthermore, are we capable of comprehending interaction dynamics, thereby facilitating the formulation of informed decisions regarding the content to revisit in order to obtain the most recent snapshot of interactions? Ultimately, we utilize our crawler in an emergency setting to locate disasters such as floods and earthquakes. Over the last few years, researchers have crawled public communities on Facebook, but we are going to find some replacements like Reddit, YouTube and Telegram.
I ricercatori spendono una notevole quantità di tempo e sforzi per recuperare dati dai social network online. Data la diversità e la grande quantità di informazioni condivise oggi sui social network online, sono stati progettati diversi crawler per acquisire diversi tipi di informazioni. Abbiamo creato un nuovo crawler. Questo crawler presenta differenze significative rispetto agli altri crawler esistenti in termini di efficienza e profondità di scansione. Stiamo ricevendo tutte le interazioni relative ad ogni singolo post. Inoltre, siamo in grado di comprendere le dinamiche di interazione, facilitando così la formulazione di decisioni informate sui contenuti da rivisitare per ottenere la fotografia più recente delle interazioni? In definitiva, utilizziamo il nostro crawler in situazioni di emergenza per individuare disastri come inondazioni e terremoti. Negli ultimi anni, i ricercatori hanno scansionato le comunità pubbliche su Facebook, ma troveremo alcuni sostituti come Reddit, YouTube e Telegram.
Social media crawling in emergency context
KARAMI, KOOSHA
2023/2024
Abstract
Researchers expend a considerable amount of time and effort to retrieve data from online social networks. With the diversity and the vast amount of information shared on online social networks today, different crawlers have been designed to capture several types of information. We have created a new crawler. This crawler exhibits significant distinctions from other existing crawlers in terms of efficiency and crawling depth. We are receiving all interactions pertaining to every single post. Furthermore, are we capable of comprehending interaction dynamics, thereby facilitating the formulation of informed decisions regarding the content to revisit in order to obtain the most recent snapshot of interactions? Ultimately, we utilize our crawler in an emergency setting to locate disasters such as floods and earthquakes. Over the last few years, researchers have crawled public communities on Facebook, but we are going to find some replacements like Reddit, YouTube and Telegram.File | Dimensione | Formato | |
---|---|---|---|
thesis_final_edition_organized.pdf
accessibile in internet per tutti
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217597