The evaluation of the effects of a pulsating gas flowrate in fluidized beds has been the target of numerous studies, that pointed out how the performances of this gas-solid configuration improve in terms of uniformity, and heat and mass transfer, with an increase of gas-solid contact surface due to a reduction in bubble size. This is particularly evident for particles with cohesive forces, such as Geldart A and C particles and wet particles. Despite extensive exploration of the fluid dynamics within these configurations, the study of the effects on mass transfer is still limited to few publications, mainly concentrated on the drying process of solid particles. The aim of this project is to experimentally study pulsed fluidized beds and to numerically simulate the configuration with the CFD model by Motlagh et al. in order to validate it with the experimental results. The main focus is the effect of pulsation on the solid-gas mass transfer of a tracer, and as a consequence the stripping efficiency of the unit. The lab mock-up used is a circulating fluidized bed stripper employing Geldart A particles, with air flowrate provided in continuous or with pulsation frequency in the range from 1Hz to 7Hz, in order to have a superficial gas velocity of 0.1 m/s. The tests have been carried out at two solid flux conditions (15 kg/m2/s and 32kg/m2/s) and the target of the measurements is to evaluate the bubble size with an optical probe analysis and the stripping performance with a helium tracer experiment. The results obtained show a substantial reduction in bubble diameter in the pulsation frequency range from 5 to 7 Hz, up to 30% reduction, and therefore an increase in gas solid contact area is expected. Moreover, helium stripping performances are improved for every pulsation frequency analyzed, with a 40% increase at 7Hz and 32 kg/m2/s solid flux. Although the encouraging experimental results, the proposed CFD model does not properly describe the agglomeration phenomenon occurring in the bed, so the bed over-expands. A deeper understanding of cohesive inter particles forces is necessary to numerically simulate fluidized beds with Geldart A particles. This work can pave the way to future studies on mass transfer in pulsed fluidized beds since the improvement in stripping performance can have a strong impact on many industrial fields, such as Fluid Catalytic Cracking or biomass Gasification.
Numerosi studi hanno affrontato l’analisi degli effetti della pulsazione sulle prestazioni dei letti fluidizzati, ed hanno messo in evidenza come ci possano essere miglioramenti in termini di regolarità nella propagazione delle bolle e di trasferimento di materia e calore tra la fase gas e la fase solida. In particolare, ciò è evidente per i letti con particelle caratterizzate da forze coesive, come le particelle Geldart C e A e le particelle umide. Nonostante numerosi studi abbiano esplorato gli effetti sulla fluidodinamica all'interno di tali configurazioni, lo studio degli effetti sul trasferimento di materia è ancora limitato a poche pubblicazioni. Lo scopo di questo progetto è compiere uno studio sperimentale sui letti fluidizzati pulsati e porre le basi per la simulazione numerica di queste configurazioni, testando il modello CFD di Motlagh et al. Sviluppato in IFP Energies Nouvelles. Il focus principale è l'effetto della pulsazione sul trasferimento di materia di un tracer e, di conseguenza, l'efficienza di strippaggio dell'unità. L’unità testata in laboratorio è uno stripper costituito da un letto fluidizzato circolante che impiega particelle Geldart A, con flusso d'aria fornito in modo continuo o con frequenza di pulsazione nell'intervallo da 1Hz a 7Hz, al fine di ottenere una velocità superficiale del gas di 0.1 m/s. Gli esperimenti sono stati condotti per due valori di flusso solido (15 kg/m2/s e 32 kg/m2/s) e l'obiettivo delle misurazioni è valutare le dimensioni delle bolle con delle sonde ottiche e le prestazioni di strippaggio utilizzando elio come tracer. I risultati ottenuti mostrano una riduzione sostanziale del diametro delle bolle nell'intervallo di frequenza di pulsazione da 5 a 7 Hz, fino al 30% di riduzione, e un conseguente aumento dell'area di contatto gas-solido. Inoltre, lo stripping del tracer migliora per ogni frequenza di pulsazione analizzata, con un incremento massimo del 40% ottenuto a 7 Hz e 32 kg/m2/s. Nonostante i risultati sperimentali incoraggianti, il modello CFD proposto non descrive adeguatamente il fenomeno di agglomerazione che si verifica tra le particelle. È necessaria una comprensione più approfondita delle forze interparticellari coesive per simulare correttamente questi letti fluidizzati. Questo lavoro può segnare la strada per futuri studi sul trasferimento di massa nei letti fluidizzati pulsati, poiché il miglioramento delle prestazioni di stripping può essere di interesse in molti settori industriali, come il Cracking catalitico o la gassificazione.
Experimental and CFD study of pulsed fluidized bed: effects of pulsation on fluid dynamic and mass transfer
Podio, Cesare
2023/2024
Abstract
The evaluation of the effects of a pulsating gas flowrate in fluidized beds has been the target of numerous studies, that pointed out how the performances of this gas-solid configuration improve in terms of uniformity, and heat and mass transfer, with an increase of gas-solid contact surface due to a reduction in bubble size. This is particularly evident for particles with cohesive forces, such as Geldart A and C particles and wet particles. Despite extensive exploration of the fluid dynamics within these configurations, the study of the effects on mass transfer is still limited to few publications, mainly concentrated on the drying process of solid particles. The aim of this project is to experimentally study pulsed fluidized beds and to numerically simulate the configuration with the CFD model by Motlagh et al. in order to validate it with the experimental results. The main focus is the effect of pulsation on the solid-gas mass transfer of a tracer, and as a consequence the stripping efficiency of the unit. The lab mock-up used is a circulating fluidized bed stripper employing Geldart A particles, with air flowrate provided in continuous or with pulsation frequency in the range from 1Hz to 7Hz, in order to have a superficial gas velocity of 0.1 m/s. The tests have been carried out at two solid flux conditions (15 kg/m2/s and 32kg/m2/s) and the target of the measurements is to evaluate the bubble size with an optical probe analysis and the stripping performance with a helium tracer experiment. The results obtained show a substantial reduction in bubble diameter in the pulsation frequency range from 5 to 7 Hz, up to 30% reduction, and therefore an increase in gas solid contact area is expected. Moreover, helium stripping performances are improved for every pulsation frequency analyzed, with a 40% increase at 7Hz and 32 kg/m2/s solid flux. Although the encouraging experimental results, the proposed CFD model does not properly describe the agglomeration phenomenon occurring in the bed, so the bed over-expands. A deeper understanding of cohesive inter particles forces is necessary to numerically simulate fluidized beds with Geldart A particles. This work can pave the way to future studies on mass transfer in pulsed fluidized beds since the improvement in stripping performance can have a strong impact on many industrial fields, such as Fluid Catalytic Cracking or biomass Gasification.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Podio_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
6.57 MB
Formato
Adobe PDF
|
6.57 MB | Adobe PDF | Visualizza/Apri |
2024_04_Podio_executive summary.pdf
non accessibile
Descrizione: executive summary
Dimensione
735.39 kB
Formato
Adobe PDF
|
735.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217701