In the transition process towards carbon-free energy sources, Battery Energy Storage Systems (BESS) are playing a key role. They allow for the storage of electrical energy generated at a given moment to be used later; this capacity becomes crucial as we move away from fossil fuels to renewable sources such as wind and solar, which are inherently inter-mittent. Indeed, thanks to battery energy storage systems, it is possible to store excess energy produced during periods of high availability of renewable sources, for example, during the summer season or particularly windy periods. Furthermore, BESS have operational characteristics aimed at providing stability to the electrical grid, as they can respond quickly to changes in demand and supply. They ensure that energy is available during peak demand from the grid or during power interruptions caused by incidents such as blackouts or natural phenomena. Among the various applicable technologies, Lithium-Ion battery storage is currently the most widely used, considering its specific characteristics such as high energy density, efficiency, and a long useful life cycle. Despite their benefits, Lithium-Ion battery energy storage systems pose some risks, especially the thermal runaway event, which is the uncontrolled overheating of batteries that can lead to the initiation of highly exothermic reactions, potentially resulting in severe incidents such as fires and/or explosions. The objective of this thesis is precisely to identify the best strategies for preventing and mitigating these incidents within BESS. Specifically, through the analysis of numerous events worldwide, it was possible to evaluate the necessity, advantages, and disadvantages of implementing safety devices, battery management systems, extinguishing agents, and the approach of the personnel present in BESS in preventing thermal runaway events and mitigating their consequences.
Nel processo di transizione verso fonti energetiche carbon-free, i sistemi di accumulo energetico mediante batterie (BESS) stanno ricoprendo un ruolo chiave. Essi consentono di immagazzinare l’energia elettrica generata in un dato momento per poterla utilizzare successivamente; questa capacità diventa di cruciale importanza nel momento in cui ci muoviamo dai combustibili fossili alle fonti rinnovabili come l’eolico e il solare, che sono intermittenti per natura. Di fatti, grazie ai sistemi di stoccaggio energetico a batterie, è possibile accumulare l’energia in eccesso prodotta durante i periodi di elevata disponibilità delle fonti rinnovabili, ad esempio durante la stagione estiva o nei periodi particolarmente ventosi. Inoltre, i BESS presentano caratteristiche operative che mirano a fornire stabilità alla rete elettrica, poiché sono in grado di rispondere rapidamente ai cambiamenti della domanda e dell’offerta della rete. Essi garantiscono che l’energia sia disponibile nei momenti di picco della richiesta da parte della rete o nei momenti di interruzione di corrente causata da inconvenienti, come blackout o fenomeni naturali. Tra le varie tecnologie applicabili, lo stoccaggio mediante batterie Li-Ion è attualmente quella più utilizzata in considerazione delle loro specifiche caratteristiche quali, ad esempio, l’elevata densità energetica, l’efficienza, il lungo ciclo di vita utile. Nonostante i loro benefici, i sistemi di stoccaggio energetico mediante batterie Li-Ion pre-sentano alcuni rischi, in particolare quello di runaway termico, ossia il surriscaldamento incontrollato delle batterie che può condurre all’innesco di reazioni fortemente esotermi-che, le quali possono a loro volta provocare scenari incidentali particolarmente severi co-me incendi e/o esplosioni. L’obiettivo di questa tesi è proprio quello di individuare le migliori strategie adottabili per la prevenzione e mitigazione di questi incidenti all’interno dei BESS. In particolare, attraverso l’analisi dei numerosi eventi avvenuti in diverse installazioni nel mondo, è stato possibile valutare la necessità, i vantaggi e gli svantaggi circa l’implementazione di dispositivi di sicurezza, di sistemi per la gestione delle batterie, degli agenti estinguenti e dell’approccio da parte del personale presente nel BESS in vista della prevenzione del runaway termico e della mitigazione delle sue conseguenze.
Lithium-Ion Battery Energy Storage Systems (BESS) : analisi delle strategie per la prevenzione degli scenari incidentali
Porcelli, Martina
2022/2023
Abstract
In the transition process towards carbon-free energy sources, Battery Energy Storage Systems (BESS) are playing a key role. They allow for the storage of electrical energy generated at a given moment to be used later; this capacity becomes crucial as we move away from fossil fuels to renewable sources such as wind and solar, which are inherently inter-mittent. Indeed, thanks to battery energy storage systems, it is possible to store excess energy produced during periods of high availability of renewable sources, for example, during the summer season or particularly windy periods. Furthermore, BESS have operational characteristics aimed at providing stability to the electrical grid, as they can respond quickly to changes in demand and supply. They ensure that energy is available during peak demand from the grid or during power interruptions caused by incidents such as blackouts or natural phenomena. Among the various applicable technologies, Lithium-Ion battery storage is currently the most widely used, considering its specific characteristics such as high energy density, efficiency, and a long useful life cycle. Despite their benefits, Lithium-Ion battery energy storage systems pose some risks, especially the thermal runaway event, which is the uncontrolled overheating of batteries that can lead to the initiation of highly exothermic reactions, potentially resulting in severe incidents such as fires and/or explosions. The objective of this thesis is precisely to identify the best strategies for preventing and mitigating these incidents within BESS. Specifically, through the analysis of numerous events worldwide, it was possible to evaluate the necessity, advantages, and disadvantages of implementing safety devices, battery management systems, extinguishing agents, and the approach of the personnel present in BESS in preventing thermal runaway events and mitigating their consequences.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Porcelli.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
5.3 MB
Formato
Adobe PDF
|
5.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217713