This thesis investigates the dynamics of student engagement in an online learning environment during the COVID-19 pandemic. Leveraging a dataset encompassing student activities, class information, and teacher details on an online platform, the study encompasses a comprehensive exploration. The initial phase involves a literature review encompassing Learning Management Systems (LMS), E-learning, and the impact of COVID-19 on education. The practical component is structured into three segments. The first entails a descriptive analysis of class behavior through Cluster analysis, Exploratory Data Analysis (EDA), and Ordinary Least Squares (OLS) models mainly focusing on active and passive learning methods. Subsequently, a similar approach is applied to analyze student behavior in the second phase focusing on students rather than classes. The final step involves predictive analysis, employing machine learning models such as KNN, Decision Tree, Ridge Lasso Regression, and Neural Networks to create a recommendation system. This system predicts student grades, aiding in the identification of suitable class or teacher assignments. The thesis concludes with practical managerial implications derived from an interview, proposing strategies to enhance both active and passive learning for students in E-learning platforms.
Questa tesi indaga le dinamiche del coinvolgimento degli studenti in un ambiente di apprendimento online durante la pandemia di COVID-19. Sfruttando un set di dati che comprende le attività degli studenti, le informazioni sulle lezioni e i dettagli sugli insegnanti su una piattaforma online, lo studio comprende una esplorazione completa. La fase iniziale prevede una revisione della letteratura che comprende i Sistemi di Gestione dell'Apprendimento (LMS), l'e-learning e l'impatto del COVID-19 sull'istruzione. Il componente pratico è strutturato in tre segmenti. Il primo comporta un'analisi descrittiva del comportamento delle classi attraverso l'analisi di clustering, l'analisi esplorativa dei dati (EDA) e modelli di regressione lineare ordinaria (OLS) focalizzati principalmente sui metodi di apprendimento attivo e passivo. Successivamente, un approccio simile viene applicato per analizzare il comportamento degli studenti nella seconda fase, concentrando l'attenzione sugli studenti piuttosto che sulle classi. Il passaggio finale comporta un'analisi predittiva, impiegando modelli di machine learning come KNN, alberi decisionali, regressione Ridge Lasso e reti neurali per creare un sistema di raccomandazione. Questo sistema predice i voti degli studenti, aiutando nell'individuazione di assegnazioni di classe o insegnanti adatti. La tesi si conclude con implicazioni manageriali pratiche derivate da un'intervista, proponendo strategie per migliorare sia l'apprendimento attivo che quello passivo per gli studenti nelle piattaforme di e-learning.
From description to prediction: unveiling student performance in online learning through data-driven analysis and machine learning
Forouhideh, Farbod;ALIAKBARIMAJID, HAMED
2023/2024
Abstract
This thesis investigates the dynamics of student engagement in an online learning environment during the COVID-19 pandemic. Leveraging a dataset encompassing student activities, class information, and teacher details on an online platform, the study encompasses a comprehensive exploration. The initial phase involves a literature review encompassing Learning Management Systems (LMS), E-learning, and the impact of COVID-19 on education. The practical component is structured into three segments. The first entails a descriptive analysis of class behavior through Cluster analysis, Exploratory Data Analysis (EDA), and Ordinary Least Squares (OLS) models mainly focusing on active and passive learning methods. Subsequently, a similar approach is applied to analyze student behavior in the second phase focusing on students rather than classes. The final step involves predictive analysis, employing machine learning models such as KNN, Decision Tree, Ridge Lasso Regression, and Neural Networks to create a recommendation system. This system predicts student grades, aiding in the identification of suitable class or teacher assignments. The thesis concludes with practical managerial implications derived from an interview, proposing strategies to enhance both active and passive learning for students in E-learning platforms.File | Dimensione | Formato | |
---|---|---|---|
Farbod Hamed Thesis.pdf
accessibile in internet per tutti
Descrizione: FROM DESCRIPTION TO PREDICTION: UNVEILING STUDENT PERFORMANCE IN ONLINE LEARNING THROUGH DATA-DRIVEN ANALYSIS AND MACHINE LEARNING
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217831