Turbine-based Oxy-Combustion cycles stand out as a promising mid-term solution for the generation of electricity from natural gas among various carbon capture technologies, in accordance with the decarbonization roadmap for the global energy sector that aims to net zero by 2050. In the context of a particular variant known as the Semiclosed Oxy-Combustion Combined Cycle (SCOC-CC), this work provides a detailed thermodynamic analysis to describe the real molecular behavior of a mixture composed mainly of carbon dioxide, thereby better understanding its performance. It is emphasized that the greater molecular complexity of this species implies higher pressure ratios for the compression phase, during which real gas effects could occur and the Ideal Gas Law could be questioned because of its particular proximity to the critical point of carbon dioxide. The study was conducted from an existing SCOC-CC configuration developed by Politecnico di Milano through the in-house Gas Steam (GS) software, which allows accurate calculation of system performance, but using only the Ideal Gas Law model. Hence the need to develop a model through the commercial software Aspen plus, appropriately calibrated in the footsteps of the initial configuration. This new version of the cycle allowed the application of several equations of state, notably REFPROP, PENG-ROBINSON, GERG2008. Lastly, an analysis was carried out aimed at understanding the real deviation introduced by using the ideal gas model as opposed to real gas ones. The first is in fact characterized by lower computational complexity and may be advantageous to use if it accurately describes the real molecular behavior. This could be useful for global understanding of which EoS model should be deployed to calculate cycle performance in future applications, given its increasing adoption among various power generation solutions.
I cicli di ossi-combustione si distinguono come una promettente soluzione a medio termine per la generazione di energia elettrica da gas naturale tra le varie tecnologie di cattura della CO2 (CCS), in conformità con roadmap per la decarbonizzazione del settore energetico globale che mira a raggiungere la neutralità carbonica entro il 2050. Nel contesto di una particolare variante nota come Semiclosed Oxy-Combustion Combined Cycle (SCOC-CC), questo lavoro fornisce un'analisi termodinamica dettagliata per descrivere il reale comportamento molecolare di una miscela composta principalmente da anidride carbonica, comprendendo così meglio le sue prestazioni. Si sottolinea che la maggiore complessità molecolare di questa specie implica rapporti di pressione più elevati per la fase di compressione, durante la quale potrebbero verificarsi effetti di gas reale e la legge dei gas ideali potrebbe essere messa in discussione a causa della particolare vicinanza al punto critico della CO2. Lo studio è stato condotto a partire da una configurazione SCOC-CC esistente sviluppata dal Politecnico di Milano attraverso il software Gas Steam (GS), il quale consente di calcolare accuratamente le prestazioni del sistema, ma utilizzando solo il modello della Legge dei Gas Ideali. Da qui la necessità di sviluppare un modello attraverso il software commerciale Aspen plus, opportunamente calibrato sulle orme della configurazione iniziale. Questa nuova versione del ciclo ha permesso l'applicazione di diverse equazioni di stato, in particolare REFPROP, PENG-ROBINSON, GERG2008. Infine, è stata condotta un'analisi volta a comprendere la reale deviazione introdotta dall'utilizzo del modello di gas ideale rispetto a quelli di gas reale. Il primo è infatti caratterizzato da una minore complessità computazionale e può essere vantaggioso da utilizzare qualora descrivesse accuratamente il comportamento molecolare reale. Ciò potrebbe essere utile per comprendere a livello globale quale modello EoS dovrebbe essere utilizzato per calcolare le prestazioni del ciclo in applicazioni future, data la sua crescente adozione tra le varie soluzioni di generazione di potenza.
Evaluation of real gas effects in oxy-fuel combustion power cycles with Carbon Capture and Storage (CCS)
Bonini, Mattia
2022/2023
Abstract
Turbine-based Oxy-Combustion cycles stand out as a promising mid-term solution for the generation of electricity from natural gas among various carbon capture technologies, in accordance with the decarbonization roadmap for the global energy sector that aims to net zero by 2050. In the context of a particular variant known as the Semiclosed Oxy-Combustion Combined Cycle (SCOC-CC), this work provides a detailed thermodynamic analysis to describe the real molecular behavior of a mixture composed mainly of carbon dioxide, thereby better understanding its performance. It is emphasized that the greater molecular complexity of this species implies higher pressure ratios for the compression phase, during which real gas effects could occur and the Ideal Gas Law could be questioned because of its particular proximity to the critical point of carbon dioxide. The study was conducted from an existing SCOC-CC configuration developed by Politecnico di Milano through the in-house Gas Steam (GS) software, which allows accurate calculation of system performance, but using only the Ideal Gas Law model. Hence the need to develop a model through the commercial software Aspen plus, appropriately calibrated in the footsteps of the initial configuration. This new version of the cycle allowed the application of several equations of state, notably REFPROP, PENG-ROBINSON, GERG2008. Lastly, an analysis was carried out aimed at understanding the real deviation introduced by using the ideal gas model as opposed to real gas ones. The first is in fact characterized by lower computational complexity and may be advantageous to use if it accurately describes the real molecular behavior. This could be useful for global understanding of which EoS model should be deployed to calculate cycle performance in future applications, given its increasing adoption among various power generation solutions.File | Dimensione | Formato | |
---|---|---|---|
Mattia Bonini_991928_2024.pdf
accessibile in internet per tutti
Dimensione
813.71 kB
Formato
Adobe PDF
|
813.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217900