In this work, particle formation refers to the set of phenomena leading to the formation of solid particles from a homogeneous gas phase. This gas mixture consists of one or more precursors of the particles and an inert gas, commonly named carrier gas. The use of carrier gas is essential for industrial applications as it enables more efficient utilization of the precursors. Over the past decades, these phenomena have been widely investigated due to their implications in the formation of the organic part of the atmospheric particulate, in the combustion, and in general in any aerosol reactor. Recently, these processes have proved very useful in synthesizing nanometric and sub-nanometric metal particles. These products are useful both as nanomaterials and catalysts to promote the growth of nanostructures, for instance, Carbon NanoTubes (CNT). For industrial systems, it is required the resolution of these phenomena coupled with Computational Fluid Dynamics (CFD) and currently there are available some tools for the resolution of this problem, but they are not available as free and open-source tools, or they are too resource intensive for the targets of this work. Therefore, the aim of this work is the development of a numerical Computational Fluid Dynamics (CFD) solver, based on catalyticFOAM, named catalyticSimpleNucleationFOAM. In this case, the fluid dynamics is handled by catalyticFOAM algorithms and the pressure-velocity coupling in the Navier-Stokes equation is managed using only the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The GDE instead is solved separately using a three-equation Momentum model for aerosol dynamics by Panda et al.: it requires no interphase physics and considers the fluid dynamics of just the carrier gas. Finally, the source terms of the GDE are linearized following the method proposed by Patankar et al. . Then, the hereby developed tool is assessed against increasing complexity cases. First, its predictions are verified reproducing the results of Panda et al. . Then, a parametric analysis is performed in a simplified 1D case, an ideal Plug Flow Reactor at steady state, and the impact of temperature, initial saturation ratio and flow velocity are assessed. Finally, the analysis is repeated in a tubular reactor and the effect of particles and monomer diffusion on the final product is verified.
In questo lavoro, “formazione delle particelle” si riferisce alla combinazione di fenomeni che portano alla produzione di particelle solide a partire da una fase gas omogenea. Questa miscela di gas consiste in uno o più precursori delle particelle ed un gas inerte, di solito indicato come di carrier gas. L’uso di quest’ultimo è essenziali in ambito industriale dato che permette un utilizzo più efficiente dei precursori. Negli ultimi decenni, questi fenomeni sono stati ampiamente studiati per i loro effetti nella formazione della frazione organica del particolato atmosferico, nella combustione e, in generale, in ogni reattore basato sugli aerosol. Di recente, questi processi vengono utilizzati nella produzione di particelle nanometriche e submicrometriche. Questi prodotti sono utili sia come nanomateriali sia come catalizzatori per la formazione di nanostrutture come i nanotubi in carbonio (CNT). Per i sistemi industriali, è richiesta la risoluzione di questi fenomeni accoppiati alla FluidoDinamica Computazionale (CFD). Tuttavia, gli strumenti disponibili non sono gratuiti ed open-source o sono troppo onerosi per i fini di questo lavoro. Per questo motivo, l’obiettivo è lo sviluppo di un risolutore numerico chiamato catalyticSimpleNucleationFOAM, che integri la CFD e le Equazioni Generali della Dinamica (GDE). La fluidodinamica viene gestita dagli algoritmi di catalyticFOAM e l’accoppiamento di pressione e velocità nelle equazioni di Navier-Stokes viene gestito utilizzato il Metodo Semi-Implicito per Equazioni Connesse alla Pressione (SIMPLE). Invece, il GDE viene gestito con modello dei momenti a tre equazioni per la dinamica dell’aerosol separatamente: non è richiesta la modellazione degli scambi interfase e considera la fluidodinamica solo del carrier gas. Infine, i termini sorgenti vengono linearizzati secondo il metodo proposto da Patankar et al. . In seguito, lo strumento qui sviluppato viene testato in casi a complessità crescente. Innanzitutto, le sue predizioni sono verificate utilizzando i dati di validazione forniti dagli autori del lavoro originale. Successivamente, viene effettuata un’analisi parametrica in un caso 1D semplificato, un PFR ideale a stazionario, e si verifica l’impatto della temperatura, del valore iniziale di sovrasaturazione e della velocità del fluido. In seguito, l’analisi viene ripetuta in un reattore tubulare e si analizza l’effetto della diffusione delle particelle e dei monomeri sul prodotto finale.
Deep injection floating-catalyst carbon deposition reactor: implementation and assessment of a CFD nucleation and growth nanoparticle model
Grassi, Cristian
2023/2024
Abstract
In this work, particle formation refers to the set of phenomena leading to the formation of solid particles from a homogeneous gas phase. This gas mixture consists of one or more precursors of the particles and an inert gas, commonly named carrier gas. The use of carrier gas is essential for industrial applications as it enables more efficient utilization of the precursors. Over the past decades, these phenomena have been widely investigated due to their implications in the formation of the organic part of the atmospheric particulate, in the combustion, and in general in any aerosol reactor. Recently, these processes have proved very useful in synthesizing nanometric and sub-nanometric metal particles. These products are useful both as nanomaterials and catalysts to promote the growth of nanostructures, for instance, Carbon NanoTubes (CNT). For industrial systems, it is required the resolution of these phenomena coupled with Computational Fluid Dynamics (CFD) and currently there are available some tools for the resolution of this problem, but they are not available as free and open-source tools, or they are too resource intensive for the targets of this work. Therefore, the aim of this work is the development of a numerical Computational Fluid Dynamics (CFD) solver, based on catalyticFOAM, named catalyticSimpleNucleationFOAM. In this case, the fluid dynamics is handled by catalyticFOAM algorithms and the pressure-velocity coupling in the Navier-Stokes equation is managed using only the Semi-Implicit Method for Pressure Linked Equations (SIMPLE). The GDE instead is solved separately using a three-equation Momentum model for aerosol dynamics by Panda et al.: it requires no interphase physics and considers the fluid dynamics of just the carrier gas. Finally, the source terms of the GDE are linearized following the method proposed by Patankar et al. . Then, the hereby developed tool is assessed against increasing complexity cases. First, its predictions are verified reproducing the results of Panda et al. . Then, a parametric analysis is performed in a simplified 1D case, an ideal Plug Flow Reactor at steady state, and the impact of temperature, initial saturation ratio and flow velocity are assessed. Finally, the analysis is repeated in a tubular reactor and the effect of particles and monomer diffusion on the final product is verified.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Grassi_Cristian_2023.pdf
non accessibile
Dimensione
2.97 MB
Formato
Adobe PDF
|
2.97 MB | Adobe PDF | Visualizza/Apri |
Executive_Grassi_Cristian_2023.pdf
non accessibile
Dimensione
886 kB
Formato
Adobe PDF
|
886 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/217963