The progressive aging of the global population involves, among its consequences, a significant increase in the rate of incidence of numerous degenerative pathologies that, in case of severe diagnosis, require a surgical intervention. Among these pathologies, some of them are related to the alteration of the physiological curvature of the spine, causing kinematic limitations and severe pain for the patient. The standard treatment consists in the implantation of spinal fixation systems constituted by pedicle screws and spinal rods made of metallic materials such as titanium alloys (e.g. Ti6Al4V) and cobalt-chromium (Co-Cr) alloys. In addition of being biocompatible and possessing great mechanical properties, such as yield stress and ultimate tensile stress, these materials must guarantee the reliability and durability of the implant over time. Furthermore, in order to adapt to a patient’s spinal curvature, spinal rods are typically bent during surgery or directly produced with a specific bending radius. However, the bending process introduces residual stresses that can significantly influence the performance and integrity of fixation systems, often leading to the need for a second surgical intervention. The performance of spinal rods is experimentally evaluated by means of fatigue tests that aim at estimating for which loads and how long they can be considered safe. Thus, the goal of this study was to analyse and compare the fatigue behaviour of titanium and cobalt-chromium spinal rods. Numerous four-point bending fatigue tests were performed on Ti6Al4V spinal rods, 100 mm long and 5.5 mm in diameter, at three load levels equivalent to 85%, 90% and 93% of the yield stress (885.74 MPa). Using two different extensometer and calibration methods, static tensile tests were then performed to characterize cobalt-chromium dog-bone specimens allowing to obtain important mechanical parameters such as Young’s Modulus (mean value approximately 251 GPa), yield stress (mean value 960 MPa), ultimate deformation (mean value approximately 31%) and ultimate tensile stress (mean value approximately 1400 MPa) which were then inserted into specific numerical models. Thus, a computational analysis was then conducted in parallel with the experimental one to simulate four-point bending fatigue tests on Ti6Al4V and Co-Cr rods, tested in both straight and lordotic configurations. By means of numerical models was possible to compare the residual stresses’ distribution for both materials at the same bending radius (150 mm); Co-Cr rods exhibited maximum tensile residual stresses of 641.3 MPa, while Ti6Al4V rods showed maximum values of 592 MPa. Despite that, Co-Cr seems to provide better fatigue performance compared to Ti6Al4V: under the same loading conditions the safety coefficients, evaluated with respect to Sines’ limit stress, were found to be higher for both straight and lordotic rods. Finally, this study proposes an idea for a hypothetical experimental set-up useful for four-point bending fatigue tests on lordotic rods with different diameters (ranging between 5 mm and 6.5 mm) and bending radius.
Il progressivo invecchiamento della popolazione mondiale comporta, tra le sue conseguenze, un forte incremento del rateo di incidenza di numerose patologie degenerative che, in caso di diagnosi grave, necessitano di essere trattate chirurgicamente. Tra queste patologie alcune riguardano l’alterazione della fisiologica curvatura della colonna vertebrale, causando limitazioni cinematiche e dolore acuto per il paziente. Il trattamento standard consiste nell’impianto di sistemi di fissazione spinale costituiti da viti peduncolari e barre spinali realizzate con materiali metallici come leghe di titanio (es. Ti6Al4V) e di cobalto-cromo (Co-Cr). Oltre a dover essere biocompatibili e ad avere elevate proprietà meccaniche, come sforzo di snervamento e a rottura, tali materiali devono garantire affidabilità e durabilità dell’impianto nel tempo. Inoltre, affinché possano adattarsi alla curvatura della colonna di un paziente, le barre spinali vengono solitamente piegate in sede chirurgica o prodotte direttamente con un certo raggio di curvatura. Il processo di piegatura introduce però delle tensioni residue che possono alterare notevolmente le prestazioni e l’integrità dei sistemi di fissazione, portando spesso alla necessità di un secondo intervento chirurgico. Sperimentalmente le prestazioni delle barre spinali vengono valutate mediante test a fatica, che hanno lo scopo di stimare per quali carichi e per quanto tempo si possano ritenere sicure. L’obiettivo di questo studio è stato quindi quello di analizzare e confrontare il comportamento a fatica di barre spinali in lega di titanio e di cobalto-cromo. Sono state eseguite diverse prove a fatica flessionale a quattro punti su barre spinali in Ti6Al4V, di lunghezza 100 mm e diametro 5.5 mm, in corrispondenza di tre livelli di carico equivalenti all’85%, 90% e 93% dello sforzo di snervamento (885.74 MPa). Sfruttando due diversi estensometri, e altrettanti metodi di calibrazione, sono stati poi eseguiti dei test di caratterizzazione statica a trazione su provini a osso di cane in lega di cobalto-cromo che hanno permesso di ottenere importanti parametri meccanici, quali modulo di Young (valore medio circa 251 GPa), sforzo di snervamento (valore medio 960 MPa), deformazione (valore medio circa 31%) e sforzo a rottura (valore medio circa 1400 MPa), inseriti successivamente in appositi modelli numerici. Un’analisi computazionale è stata quindi condotta parallelamente a quella sperimentale per simulare le prove a fatica flessionale a quattro punti su barre in Ti6Al4V e barre in lega di Co-Cr, testate sia in configurazione rettilinea che lordotica. Mediante i modelli numerici è stato possibile confrontare a parità di raggio di curvatura (150 mm) la distribuzione delle tensioni residue per entrambi i materiali; le barre in Co-Cr hanno riportato degli sforzi residui massimi in trazione di 641.3 MPa, mentre quelle in Ti6Al4V dei valori massimi di 592 MPa. Nonostante ciò, il Co-Cr sembra offrire delle prestazioni a fatica migliori rispetto al Ti6Al4V: alle stesse condizioni di carico i coefficienti di sicurezza, valutati rispetto allo sforzo limite di Sines, sono risultati maggiori sia considerando le barre dritte che lordotiche. Infine, in questo studio viene proposta un’idea per un ipotetico set-up sperimentale utile per testare a fatica flessionale a quattro punti delle barre lordotiche aventi diversi diametri (variabili tra 5 mm e 6.5 mm) e raggi di curvatura.
Experimental characterization of titanium and cobalt-chromium spinal rods and finite element comparison under four-point bending analyses
CAPODAGLIO, LORENZO;CHIERICI, LETIZIA
2022/2023
Abstract
The progressive aging of the global population involves, among its consequences, a significant increase in the rate of incidence of numerous degenerative pathologies that, in case of severe diagnosis, require a surgical intervention. Among these pathologies, some of them are related to the alteration of the physiological curvature of the spine, causing kinematic limitations and severe pain for the patient. The standard treatment consists in the implantation of spinal fixation systems constituted by pedicle screws and spinal rods made of metallic materials such as titanium alloys (e.g. Ti6Al4V) and cobalt-chromium (Co-Cr) alloys. In addition of being biocompatible and possessing great mechanical properties, such as yield stress and ultimate tensile stress, these materials must guarantee the reliability and durability of the implant over time. Furthermore, in order to adapt to a patient’s spinal curvature, spinal rods are typically bent during surgery or directly produced with a specific bending radius. However, the bending process introduces residual stresses that can significantly influence the performance and integrity of fixation systems, often leading to the need for a second surgical intervention. The performance of spinal rods is experimentally evaluated by means of fatigue tests that aim at estimating for which loads and how long they can be considered safe. Thus, the goal of this study was to analyse and compare the fatigue behaviour of titanium and cobalt-chromium spinal rods. Numerous four-point bending fatigue tests were performed on Ti6Al4V spinal rods, 100 mm long and 5.5 mm in diameter, at three load levels equivalent to 85%, 90% and 93% of the yield stress (885.74 MPa). Using two different extensometer and calibration methods, static tensile tests were then performed to characterize cobalt-chromium dog-bone specimens allowing to obtain important mechanical parameters such as Young’s Modulus (mean value approximately 251 GPa), yield stress (mean value 960 MPa), ultimate deformation (mean value approximately 31%) and ultimate tensile stress (mean value approximately 1400 MPa) which were then inserted into specific numerical models. Thus, a computational analysis was then conducted in parallel with the experimental one to simulate four-point bending fatigue tests on Ti6Al4V and Co-Cr rods, tested in both straight and lordotic configurations. By means of numerical models was possible to compare the residual stresses’ distribution for both materials at the same bending radius (150 mm); Co-Cr rods exhibited maximum tensile residual stresses of 641.3 MPa, while Ti6Al4V rods showed maximum values of 592 MPa. Despite that, Co-Cr seems to provide better fatigue performance compared to Ti6Al4V: under the same loading conditions the safety coefficients, evaluated with respect to Sines’ limit stress, were found to be higher for both straight and lordotic rods. Finally, this study proposes an idea for a hypothetical experimental set-up useful for four-point bending fatigue tests on lordotic rods with different diameters (ranging between 5 mm and 6.5 mm) and bending radius.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Capodaglio_Chierici_Tesi_01 (1).pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: testo della tesi
Dimensione
9.15 MB
Formato
Adobe PDF
|
9.15 MB | Adobe PDF | Visualizza/Apri |
2024_04_Capodaglio_Chierici_Executive Summary_02 (1).pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: testo dell'executive summary
Dimensione
690.68 kB
Formato
Adobe PDF
|
690.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218013