The study of exhaust plumes from rocket motors is of particular interest in both scientific and industrial applications due to their complex fluid dynamic nature and impact on chemical and thermal loads in propulsion systems. Understanding and predicting these phenomena is crucial for assessing platform damage in missile launches, both in terrestrial and naval applications. Moreover, modeling the behavior of rocket exhaust plumes pose significant challenges as the numerical simulations are particularly complex and expensive in terms of computational times. This study focuses on numerical modeling of underexpanded jets using Computational Fluid Dynamics, specifically employing the Pressure-Based solver in Ansys Fluent. The research aims in fact at evaluating the solver limits in simulating compressible and supersonic flows, with particular focus on free underexpanded jets and impinging underexpanded jets, which involve the formation of normal shockwaves, such as the Mach disk. Understanding the simulation capabilities of Pressure-Based solver for these phenomena is of particular interest to evaluate the possibility of reducing simulation times while maintaining an acceptable level of simulation accuracy, compared to the use of Density-Based. The results of the study show that the Pressure-Based solver allows to obtain convergence in simulations of compressible, supersonic flows, both in free and impinging conditions. However, in order to obtain successful convergence some cautions are required, such as employing a first-order upwind scheme for the momentum equation spatial discretization and the refinement of the mesh around strong shock regions, such as Mach disks. The Pressure-Based solver has shown to have limitations in simulating highly underexpanded jets, where the solver may encounter numerical oscillations. Additionally, the absence of a co-flow leads to thicker mixing layers, negatively affecting solver stability.
Lo studio dei pennacchi di scarico dagli endoreattori risulta di particolare interesse sia in campo scientifico che industriale a causa della loro natura fluidodinamica complessa e l'impatto in termini di carichi chimici e termici nei sistemi propulsivi. Comprendere e prevedere questi fenomeni è cruciale per valutare i danni alle piattaforme nei lanci di missili, sia in applicazioni terrestri che navali. Inoltre, modellare il comportamento dei pennacchi di scarico dei motori a razzo pone sfide significative in quanto le simulazioni numeriche risultano particolarmente complesse e onerose in termini di tempo di calcolo. Questo studio si concentra sulla modellazione numerica di getti sottoespansi attraverso l'impiego della fluidodinamica computazionale, utilizzando il solutore Pressure-Based in Ansys Fluent. La ricerca mira a valutare i limiti di utilizzo del solutore nel simulare flussi comprimibili e supersonici, con particolare attenzione ai getti sottoespansi in atmosfera e con impatto a parete, che comportano la formazione di onde d'urto normali, come il disco di Mach. Comprendere le capacità di simulazione del Pressure-Based solver per questi fenomeni risulta di particolare interesse per valutare la possibilità di ridurre i tempi di simulazione, mantenendo un accettabile grado di accuratezza rispetto all'utilizzo del Density-Based. I risultati indicano che il solutore Pressure-Based permette di ottenere simulazioni a convergenza per getti comprimibili e supersonici, sia liberi che in condizioni di impatto a parete. Tuttavia, il raggiungimento della convergenza richiede alcune accortezze, tra cui l'impiego di uno schema del prim'ordine per la discretizzazione spaziale dell'equazione della quantità di moto e il raffinamento della mesh nelle regioni di onde d'urto normali, come i dischi di Mach. Il solutore Pressure-Based ha dimostrato di avere un limite nella simulazione di getti altamente sottoespansi, con la formazione di oscillazioni di carattere numerico. Inoltre, l'assenza di un flusso esterno (co-flow) porta a strati di miscelazione più spessi, che influenzano negativamente la stabilità delle simulazioni.
Numerical investigation of supersonic flows with pressure-based solver: applications to underexpanded jets
Maestroni, Samuele
2022/2023
Abstract
The study of exhaust plumes from rocket motors is of particular interest in both scientific and industrial applications due to their complex fluid dynamic nature and impact on chemical and thermal loads in propulsion systems. Understanding and predicting these phenomena is crucial for assessing platform damage in missile launches, both in terrestrial and naval applications. Moreover, modeling the behavior of rocket exhaust plumes pose significant challenges as the numerical simulations are particularly complex and expensive in terms of computational times. This study focuses on numerical modeling of underexpanded jets using Computational Fluid Dynamics, specifically employing the Pressure-Based solver in Ansys Fluent. The research aims in fact at evaluating the solver limits in simulating compressible and supersonic flows, with particular focus on free underexpanded jets and impinging underexpanded jets, which involve the formation of normal shockwaves, such as the Mach disk. Understanding the simulation capabilities of Pressure-Based solver for these phenomena is of particular interest to evaluate the possibility of reducing simulation times while maintaining an acceptable level of simulation accuracy, compared to the use of Density-Based. The results of the study show that the Pressure-Based solver allows to obtain convergence in simulations of compressible, supersonic flows, both in free and impinging conditions. However, in order to obtain successful convergence some cautions are required, such as employing a first-order upwind scheme for the momentum equation spatial discretization and the refinement of the mesh around strong shock regions, such as Mach disks. The Pressure-Based solver has shown to have limitations in simulating highly underexpanded jets, where the solver may encounter numerical oscillations. Additionally, the absence of a co-flow leads to thicker mixing layers, negatively affecting solver stability.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Maestroni_Tesi_01.pdf
non accessibile
Dimensione
41.13 MB
Formato
Adobe PDF
|
41.13 MB | Adobe PDF | Visualizza/Apri |
2024_04_Maestroni_Executive Summary_02.pdf
non accessibile
Dimensione
7.43 MB
Formato
Adobe PDF
|
7.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218058