Today we rely on satellite navigation to know our position and navigate. GNSS has been the core of positioning in the past, but the problem with GNSS is that it is not so accurate indoors as the signals get weaker. With the new 5g network coming a lot of positioning has been shifted to the 5g network especially in the Urban scenario as 3GPP provides the necessary signals and standards that can be included to position in the network. Positioning of the UAVs has been a crucial topic of discussion as now UAVs are used in diverse fields like delivery drones, to detect the potential damage for the firefighters and also as base stations to extend the coverage of the cells. The positioning becomes important to keep track of all UAVs and to move them seamlessly inside the network as they take advantage of the network to supposedly perform video streaming. Tracking helps to manage the air traffic to optimise it. The main motivation is to position the altitude of the UAV accurately as the UAVs fly at different altitudes and with fast-moving UAVs positioning the height of the UAV can be challenging. As 3GPP has standardized a few methods responsible for positioning and summarizing those methods we found that the Extended Kalman Filter was the most optimal one to use along with using Time Difference of Arrival (TDOA). As EKF can track the UAV along the whole trajectory and provide with accurate results and TDOA helps to remove the synchronisation error caused between the UAV and the Base Station. While positioning the UAV in the 3D scenario at least four base stations are required in the range-based positioning, the more number of base stations improves the accuracy but at the same time increases the time and power required to process it. As the UAVs move faster we need to position accurately inside a given error limit and reduce the base stations which are involved. The techniques used to remove the base stations are the SNR and the angle. While first removing the base stations which have the least SNR and then removing the base stations which has the minimum difference of angle between the base station and the UAV. The results include finding out which solution is optimal.
Oggi ci affidiamo alla navigazione satellitare per conoscere la nostra posizione e navigare. Il GNSS è stato il fulcro del posizionamento in passato, ma il problema con il GNSS è che non è così preciso negli ambienti chiusi poiché i segnali diventano più deboli. Con l’arrivo della nuova rete 5G, gran parte del posizionamento è stato spostato sulla rete 5G, soprattutto nello scenario urbano poiché 3GPP fornisce i segnali e gli standard necessari che possono essere inclusi per posizionarsi nella rete. Il posizionamento degli UAV è stato un argomento di discussione cruciale poiché ora gli UAV vengono utilizzati in diversi campi come i droni per le consegne, per rilevare potenziali danni per i vigili del fuoco e anche come stazioni base per estendere la copertura delle celle. Il posizionamento diventa importante per tenere traccia di tutti gli UAV e spostarli senza problemi all’interno della rete mentre sfruttano la rete per eseguire presumibilmente lo streaming video. Il monitoraggio aiuta a gestire il traffico aereo per ottimizzarlo. La motivazione principale è posizionare accuratamente l’altitudine dell’UAV poiché gli UAV volano a diverse altitudini e con gli UAV in rapido movimento posizionare l’altezza dell’UAV può essere difficile. Poiché 3GPP ha standardizzato alcuni metodi responsabili del posizionamento e del riepi- logo di tali metodi, abbiamo scoperto che il filtro di Kalman esteso era quello più ottimale da utilizzare insieme all’utilizzo della differenza oraria di arrivo (TDOA). Poiché EKF può tracciare l’UAV lungo l’intera traiettoria e fornire risultati accurati, TDOA aiuta a rimuovere l’errore di sincronizzazione causato tra l’UAV e la stazione base. Durante il posizionamento dell’UAV nello scenario 3D sono necessarie almeno quattro stazioni base nel posizionamento basato sulla portata, maggiore è il numero di stazioni base migliora la precisione ma allo stesso tempo aumenta il tempo e la potenza neces- sari per elaborarlo. Poiché gli UAV si muovono più velocemente, dobbiamo posizionarci accuratamente entro un determinato limite di errore e ridurre le stazioni base coinvolte. Le tecniche utilizzate per rimuovere le stazioni base sono l’SNR e l’angolo. Rimuovendo prima le stazioni base che hanno il minor SNR e poi rimuovendo le stazioni base che hanno la minima differenza di angolo tra la stazione base e l’UAV. I risultati includono la scoperta di quale soluzione è ottimale.
Positioning of UAVs in 5g Networks
Gupta, Prabhat Vikas
2023/2024
Abstract
Today we rely on satellite navigation to know our position and navigate. GNSS has been the core of positioning in the past, but the problem with GNSS is that it is not so accurate indoors as the signals get weaker. With the new 5g network coming a lot of positioning has been shifted to the 5g network especially in the Urban scenario as 3GPP provides the necessary signals and standards that can be included to position in the network. Positioning of the UAVs has been a crucial topic of discussion as now UAVs are used in diverse fields like delivery drones, to detect the potential damage for the firefighters and also as base stations to extend the coverage of the cells. The positioning becomes important to keep track of all UAVs and to move them seamlessly inside the network as they take advantage of the network to supposedly perform video streaming. Tracking helps to manage the air traffic to optimise it. The main motivation is to position the altitude of the UAV accurately as the UAVs fly at different altitudes and with fast-moving UAVs positioning the height of the UAV can be challenging. As 3GPP has standardized a few methods responsible for positioning and summarizing those methods we found that the Extended Kalman Filter was the most optimal one to use along with using Time Difference of Arrival (TDOA). As EKF can track the UAV along the whole trajectory and provide with accurate results and TDOA helps to remove the synchronisation error caused between the UAV and the Base Station. While positioning the UAV in the 3D scenario at least four base stations are required in the range-based positioning, the more number of base stations improves the accuracy but at the same time increases the time and power required to process it. As the UAVs move faster we need to position accurately inside a given error limit and reduce the base stations which are involved. The techniques used to remove the base stations are the SNR and the angle. While first removing the base stations which have the least SNR and then removing the base stations which has the minimum difference of angle between the base station and the UAV. The results include finding out which solution is optimal.File | Dimensione | Formato | |
---|---|---|---|
Thesis Final Draft.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Final Draft
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218080