Photoelectrochemical (PEC) water splitting is an environment friendly and promising way to store solar energy in the form of hydrogen without greenhouse gas emissions. This involves the use of a semiconductor that absorbs photons (photocathode) and generates electrons to drive the water splitting reaction to produce hydrogen and oxygen. Cu-based oxides have shown potential as photocathode materials; however, they suffer from poor light harvesting capability, slow charge transfer and photocorrosion. Cu-based chalcogenides can overcome these limitations thanks to the possibility to tune their band gap and being made of low-cost and earth-abundant elements. In this work electrodeposited Pt/ZnO/Cu3BiS3 composite photocathodes have been evaluated for PEC water splitting. Furthermore, a comparison has been made considering the performance of the photocathode having Cu3BiS3 electrodeposited in three different ways: a) Co-deposition of Cu, Bi, and S followed by sulfurizing (3CBS), b) Co-deposition of Cu and Bi followed by sulfurizing (2CBS), c) Individual deposition of Cu and Bi followed by sulfurizing (1CBS). ZnO was electrodeposited at different potentials (-1 V, -0.8 V, -0.7 V) and Pt nanoparticles were electrodeposited under illumination. The prepared samples were investigated via SEM, EDX, XRD, UV-vis spectroscopy to assess their morphology, the success of the synthesis method, and their energy band gap values. Linear sweep voltammetry (LSV) under different illumination conditions (chopping illumination, light ON, light OFF) was carried out to compare the PEC performance and investigate the effect of ZnO and Pt. Results demonstrate that negligible amounts of secondary phases were present indicating the success of the synthesis method. Deposition of ZnO at -0.7 V provided a uniform morphology for the deposition of Pt leading to its homogeneous distribution. The energy band gap values were approximated to be 1.25 eV for 3CBS, 1.13 eV for 2CBS, 0.95 eV for 1CBS. Bare CBS samples exhibited poor PEC performance with no photovoltaic response and low current densities. Deposition of ZnO led to an increase in the photovoltaic response only in the case of 2CBS due to formation of a heterojunction, and in the case of 3CBS and 1CBS it resulted in an increase in the current density due to improved catalytic properties. Deposition of Pt nanoparticles improved the photovoltaic response and the current density of all samples. Pt/ZnO/3CBS demonstrated the best PEC performance and shows potential as a photocathode.
La fotoelettrolisi è un modo promettente e rispettoso dell'ambiente per immagazzinare l'energia solare sotto forma di idrogeno senza emissioni di gas serra. Ciò comporta l’uso di un semiconduttore che assorba fotoni (fotocatodo) e generi elettroni che prendano parte alla reazione di scissione dell’acqua per produrre idrogeno e ossigeno. Gli ossidi a base di rame hanno mostrato potenziale come materiali fotocatodici, tuttavia soffrono di scarsa capacità di raccolta della luce, trasferimento lento della carica e fotocorrosione. I calcogenuri a base di rame possono superare queste limitazioni grazie al loro appropriato intervallo di banda ed essere costituiti da elementi a basso costo e abbondanti sulla terra. In questo lavoro i fotocatodi compositi Pt/ZnO/Cu3BiS3 prodotti tramite elettrodepisizione sono stati valutati per la fotoelettrolisi. Inoltre, è stato effettuato un confronto considerando le prestazioni di Pt/ZnO/Cu3BiS3 (CBS) elettrodepositando il Cu3BiS3 in tre modi diversi: a) Co-deposizione di Cu, Bi e S seguita da solforazione (3CBS), b) Co-deposizione di Cu e Bi seguita da solforazione (2CBS), c) Deposizione individuale di Cu e Bi seguita da solforazione (1CBS). Lo ZnO è stato elettrodepositato a diversi potenziali (-1 V, -0.8 V, -0.7 V) e le nanoparticelle di Pt sono state elettrodepositate sotto illuminazione. I campioni preparati sono stati studiati tramite SEM, XRD e spettroscopie EDX ed UV-vis per valutarne la morfologia, l’efficacia del metodo di sintesi ed i valori di gap della banda energetica. È stata eseguita la voltammetria a scansione lineare (LSV) in diverse condizioni di illuminazione (illuminazione interrotta, luce accesa, luce spenta) per confrontare le prestazioni e studiare l'effetto di ZnO e Pt. I risultati dimostrano che erano presenti fasi secondarie in quantita trascurabili che indicavano il successo del metodo di sintesi. La deposizione di ZnO a -0.7 V ha fornito una morfologia uniforme per la deposizione di Pt portando alla sua distribuzione omogenea. I valori del gap della banda energetica sono stati approssimati a 1.25 eV per 3CBS, 1.13 eV per 2CBS, 0.95 eV per 1CBS. I campioni con solo CBS hanno mostrato scarse prestazioni senza risposta fotovoltaica e basse densità di corrente. La deposizione di ZnO ha portato ad un aumento della densità di corrente per tutti i campioni grazie alle migliori proprietà catalitiche. La deposizione di nanoparticelle di Pt ha migliorato la risposta fotovoltaica e la densità di corrente per tutti i campioni. Pt/ZnO/3CBS ha dimostrato le migliori prestazioni.
Development of Cu3BiS3-based photocathodes for solar water splitting
JOKHIO, DANYAL HAKEEM
2023/2024
Abstract
Photoelectrochemical (PEC) water splitting is an environment friendly and promising way to store solar energy in the form of hydrogen without greenhouse gas emissions. This involves the use of a semiconductor that absorbs photons (photocathode) and generates electrons to drive the water splitting reaction to produce hydrogen and oxygen. Cu-based oxides have shown potential as photocathode materials; however, they suffer from poor light harvesting capability, slow charge transfer and photocorrosion. Cu-based chalcogenides can overcome these limitations thanks to the possibility to tune their band gap and being made of low-cost and earth-abundant elements. In this work electrodeposited Pt/ZnO/Cu3BiS3 composite photocathodes have been evaluated for PEC water splitting. Furthermore, a comparison has been made considering the performance of the photocathode having Cu3BiS3 electrodeposited in three different ways: a) Co-deposition of Cu, Bi, and S followed by sulfurizing (3CBS), b) Co-deposition of Cu and Bi followed by sulfurizing (2CBS), c) Individual deposition of Cu and Bi followed by sulfurizing (1CBS). ZnO was electrodeposited at different potentials (-1 V, -0.8 V, -0.7 V) and Pt nanoparticles were electrodeposited under illumination. The prepared samples were investigated via SEM, EDX, XRD, UV-vis spectroscopy to assess their morphology, the success of the synthesis method, and their energy band gap values. Linear sweep voltammetry (LSV) under different illumination conditions (chopping illumination, light ON, light OFF) was carried out to compare the PEC performance and investigate the effect of ZnO and Pt. Results demonstrate that negligible amounts of secondary phases were present indicating the success of the synthesis method. Deposition of ZnO at -0.7 V provided a uniform morphology for the deposition of Pt leading to its homogeneous distribution. The energy band gap values were approximated to be 1.25 eV for 3CBS, 1.13 eV for 2CBS, 0.95 eV for 1CBS. Bare CBS samples exhibited poor PEC performance with no photovoltaic response and low current densities. Deposition of ZnO led to an increase in the photovoltaic response only in the case of 2CBS due to formation of a heterojunction, and in the case of 3CBS and 1CBS it resulted in an increase in the current density due to improved catalytic properties. Deposition of Pt nanoparticles improved the photovoltaic response and the current density of all samples. Pt/ZnO/3CBS demonstrated the best PEC performance and shows potential as a photocathode.File | Dimensione | Formato | |
---|---|---|---|
2024_4_Jokhio_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Visualizza/Apri |
2024_4_Jokhio_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
5.93 MB
Formato
Adobe PDF
|
5.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218087