The manufacturing sector consumes a significant portion of energy and resources globally, playing a decisive role in environmental degradation. In this context, Additive Manufacturing (AM) is one of the most promising technologies to pursue sustainability goals, revolutionising the very concept of manufacturing. Despite the potential environmental benefits of AM, such as waste reduction and design and production flexibility, its overall sustainability is still debated in the literature and, in any case, highly dependent on the case considered. For this reason, studies evaluating the environmental impact of objects made in AM, often contrasted to that of original versions obtained through conventional technologies, are becoming increasingly frequent. In this thesis work, an innovative model of one of the most widely used methodologies to analyse energy consumption and environmental footprint in terms of CO2 emissions, the Life Cycle Assessment (LCA), is proposed, from the extraction of raw materials to the finished product, including the end-of-life phase in a circular economy perspective. This model is applied to two hydraulic components originally manufactured in green sand casting and redesigned for printing by Laser Powder Bed Fusion (L-PBF) and Binder Jetting (BJ). For the cast-iron valve body, the impact of replacing it with a lighter stainless steel version made with L-PBF and BJ is analysed, while for the manifold, made exclusively through L-PBF, the link between sustainability and parts consolidation is investigated. In both cases, traditional technology is found to be less energy-intensive and have a smaller environmental footprint. However, when simulating the use in mobile systems, the weight reduction of parts made from AM compensates for the higher consumption related to the production steps. Finally, with the superposition of end-of-life recycling with atomisation, closed material flows are implemented and quantified through the modelling of a perfect industrial symbiosis.
Il settore manifatturiero consuma una quota rilevante di energia e risorse a livello globale, svolgendo un ruolo determinante nel degrado ambientale. In questo contesto, l’Additive Manufacturing (AM) è una delle tecnologie più promettenti per perseguire obiettivi di sostenibilità, rivoluzionando il concetto stesso di produzione. Nonostante i potenziali benefici ambientali dell'AM, come la riduzione degli sprechi e la flessibilità di design e di produzione, la sua sostenibilità complessiva è ancora discussa in letteratura e, in ogni caso, fortemente dipendente dai casi considerati. Per questo motivo, sono sempre più frequenti studi di valutazione dell’impatto ambientale di oggetti realizzati in AM, spesso confrontato con quello delle versioni originali ottenute tramite tecnologie convenzionali. In questo lavoro di tesi si propone un modello innovativo di una delle metodologie più diffuse per analizzare i consumi energetici e l’impronta ambientale, in termini di emissioni di CO2, il Life Cycle Assessment (LCA), dall’estrazione delle materie prime al prodotto finito, includendo la fase di fine vita in un’ottica di economia circolare. Questo modello è applicato a due componenti idraulici realizzati originariamente in colata in sabbia verde e riprogettati per la stampa tramite Laser Powder Bed Fusion (L-PBF) e Binder Jetting (BJ). Per il corpo valvola in ghisa si analizza l’impatto della sua sostituzione con una versione più leggera in acciaio inossidabile realizzata con L-PBF e BJ, mentre per il collettore, prodotto esclusivamente in L-PBF, si indaga il legame tra sostenibilità e consolidazione di parti. In entrambi i casi, la tecnologia tradizionale risulta essere meno energivora e con una minore impronta ambientale. Andando, però, a simulare l’utilizzo in sistemi mobili, la riduzione di peso dei componenti realizzati in AM permette di compensare i maggiori consumi relativi alle fasi produttive. Infine, con la sovrapposizione del riciclo a fine vita con l’atomizzazione, si implementano e quantificano i flussi chiusi di materiale, tramite la modellizzazione di una perfetta simbiosi industriale.
Advancing sustainability via additive manufacturing: life cycle assessment in hydraulic components production
MACCHIONI, FRANCESCA
2022/2023
Abstract
The manufacturing sector consumes a significant portion of energy and resources globally, playing a decisive role in environmental degradation. In this context, Additive Manufacturing (AM) is one of the most promising technologies to pursue sustainability goals, revolutionising the very concept of manufacturing. Despite the potential environmental benefits of AM, such as waste reduction and design and production flexibility, its overall sustainability is still debated in the literature and, in any case, highly dependent on the case considered. For this reason, studies evaluating the environmental impact of objects made in AM, often contrasted to that of original versions obtained through conventional technologies, are becoming increasingly frequent. In this thesis work, an innovative model of one of the most widely used methodologies to analyse energy consumption and environmental footprint in terms of CO2 emissions, the Life Cycle Assessment (LCA), is proposed, from the extraction of raw materials to the finished product, including the end-of-life phase in a circular economy perspective. This model is applied to two hydraulic components originally manufactured in green sand casting and redesigned for printing by Laser Powder Bed Fusion (L-PBF) and Binder Jetting (BJ). For the cast-iron valve body, the impact of replacing it with a lighter stainless steel version made with L-PBF and BJ is analysed, while for the manifold, made exclusively through L-PBF, the link between sustainability and parts consolidation is investigated. In both cases, traditional technology is found to be less energy-intensive and have a smaller environmental footprint. However, when simulating the use in mobile systems, the weight reduction of parts made from AM compensates for the higher consumption related to the production steps. Finally, with the superposition of end-of-life recycling with atomisation, closed material flows are implemented and quantified through the modelling of a perfect industrial symbiosis.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Macchioni_Executive Summary.pdf
accessibile in internet per tutti
Dimensione
831.32 kB
Formato
Adobe PDF
|
831.32 kB | Adobe PDF | Visualizza/Apri |
2024_04_Macchioni_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
2.95 MB
Formato
Adobe PDF
|
2.95 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218129