The objective of this work is to introduce a solution that could simplify the hydrogen supply chain to end-users, such as Hydrogen Refuelling Stations (HRS). This approach aims to accelerate the development of an HRS network and boost the adoption of Fuel Cell Electric Trucks (FCET). The research concentrates on designing and analyzing a system capable of separating and purifying hydrogen from a hypothetical mixture of hydrogen and natural gas, transported via the existing natural gas grid. This procedure is commonly referred to as deblending. Given that this thesis was carried out with the support and guidance of the Italian company Pietro Fiorentini, the design approach focused on utilizing existing technologies and "ready-to-use" devices wherever feasible. For this objective, two main parts of the study have been conducted. An analysis of an existing polymeric membrane was undertaken to explore its suitability for first-stage separation, with the goal of increasing the hydrogen fraction in the stream. To assess the membrane module’s performance, a gas separation model was enhanced to incorporate hydrogen into the process. This model was subsequently applied under various operating conditions to examine the impact of each variable. The second part of the work outlines the design for the deblending system, adopting a hybrid methodology that includes two distinct stages: one dedicated to initial separation and the other to further purification. Two configurations were examined, both featuring a first stage equipped with polymeric membrane modules. For the purification stage, either a Pressure Swing Adsorption (PSA) unit or an Electrochemical Hydrogen Compressor device was considered. Optimal designs for a base case scenario were proposed and analyzed for both configurations to evaluate the Levelized Cost of Separation & Purification (LCOS&P). Subsequently, a sensitivity analysis of the main process variables was conducted to examine the solution under various conditions. Finally, the outcomes from the previous sections were utilized to compare this solution against existing methods of supplying hydrogen to refuelling stations.
L’obiettivo di questo lavoro è proporre una soluzione che possa semplificare la catena di approvvigionamento dell’idrogeno per utenti finali, come le stazioni di rifornimento ad idrogeno (HRS). Questo approccio punta ad accelerare lo sviluppo di una rete di HRS e ad incrementare l’adozione di camion elettrici a celle a combustibile. La ricerca si concentra sulla progettazione e analisi di un sistema in grado di separare e purificare l’idrogeno da un’ipotetica miscela di idrogeno e gas naturale, trasportata attraverso l’attuale rete gas. Questo processo è spesso definito come deblending. Poiché questa tesi è stata sviluppata con il sostegno e la direzione dell’azienda italiana Pietro Fiorentini, si è seguito un approccio concentrato sull’uso di tecnologie esistenti e dispositivi "pronti all’uso" ove possibile. In un prima parte, è stata effettuata un’indagine di una membrana polimerica esistente per valutarne la compatibilità in una fase iniziale di separazione, con l’obiettivo di aumentare la frazione di idrogeno nel flusso. Per valutare le prestazioni del modulo di membrana, è stato aggiornato un modello per la separazione dei gas per includere l’idrogeno nel processo. Questo modello è stato successivamente applicato in diverse condizioni operative per esaminare l’impatto di ogni variabile sul funzionamento. La seconda parte del lavoro illustra la progettazione del sistema, adottando una metodologia ibrida che include due fasi distinte: una dedicata alla separazione iniziale e l’altra alla purificazione. Sono state esaminate due configurazioni, entrambe dotate di una prima fase con moduli a membrana polimerica. Per la fase di purificazione, è stato considerato l’uso di un’unità di Pressure Swing Adsorption (PSA) o di un dispositivo di compressione elettrochimica dell’idrogeno. Un’ottimizzazione delle due configurazioni è stata proposta per uno scenario di base al fine di valutarne il costo di separazione e purificazione (LCOS&P). Successivamente, è stata condotta un’analisi di sensibilità sulle principali variabili del processo per esaminare la soluzione in varie condizioni. Infine, i risultati delle sezioni precedenti sono stati utilizzati per confrontare questa soluzione con i metodi esistenti di approvvigionamento di idrogeno alle stazioni di rifornimento.
Design of a deblending system for hydrogen refuelling stations
Massera, Matteo
2022/2023
Abstract
The objective of this work is to introduce a solution that could simplify the hydrogen supply chain to end-users, such as Hydrogen Refuelling Stations (HRS). This approach aims to accelerate the development of an HRS network and boost the adoption of Fuel Cell Electric Trucks (FCET). The research concentrates on designing and analyzing a system capable of separating and purifying hydrogen from a hypothetical mixture of hydrogen and natural gas, transported via the existing natural gas grid. This procedure is commonly referred to as deblending. Given that this thesis was carried out with the support and guidance of the Italian company Pietro Fiorentini, the design approach focused on utilizing existing technologies and "ready-to-use" devices wherever feasible. For this objective, two main parts of the study have been conducted. An analysis of an existing polymeric membrane was undertaken to explore its suitability for first-stage separation, with the goal of increasing the hydrogen fraction in the stream. To assess the membrane module’s performance, a gas separation model was enhanced to incorporate hydrogen into the process. This model was subsequently applied under various operating conditions to examine the impact of each variable. The second part of the work outlines the design for the deblending system, adopting a hybrid methodology that includes two distinct stages: one dedicated to initial separation and the other to further purification. Two configurations were examined, both featuring a first stage equipped with polymeric membrane modules. For the purification stage, either a Pressure Swing Adsorption (PSA) unit or an Electrochemical Hydrogen Compressor device was considered. Optimal designs for a base case scenario were proposed and analyzed for both configurations to evaluate the Levelized Cost of Separation & Purification (LCOS&P). Subsequently, a sensitivity analysis of the main process variables was conducted to examine the solution under various conditions. Finally, the outcomes from the previous sections were utilized to compare this solution against existing methods of supplying hydrogen to refuelling stations.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Massera_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
23.53 MB
Formato
Adobe PDF
|
23.53 MB | Adobe PDF | Visualizza/Apri |
2024_04_Massera_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218136