The aim of this work is to develop a methodology which employs computational models to simulate the implantation of minimally invasive devices for the treatment of glaucoma. Glaucoma is an optic neuropathy characterized by the progressive degeneration, loss and death of retinal ganglion cells. Elevated intraocular pressure (IOP) is the primary risk factor for the developing and the progression of this disease. A balance between the ciliary body's production of aqueous humor and its drainage through the outflow pathways maintains physiological IOP values. When the eye is suffering for glaucoma, MIGS, or minimally invasive devices, allow the development of an alternative path for aqueous humor outflow. They can effectively lower IOP and are characterized by a short visual field recovery period. They are classified based on the implantation zone that corresponds to the drainage pathway. They provide a safer and less invasive technique being an alternative to conventional treatments. A comprehensive analysis of the MIGS mechanism of action and a long-term device investigation can be improved by a numerical approach, which will also support the clinical usage of MIGS. The main goal of this thesis is to build in LS-Dyna a fluid-structure interaction (FSI) simulation that simulates the implantation of two devices—Istent inject—into a glaucomatous eye. The primary objective is to investigate how the aqueous humor's fluid dynamics and IOP change during surgery, taking into account any contact between the devices and the ocular tissues, as well as the interaction between the solid domain (eyeball and stents) and the fluid domain (aqueous humor). Initially, the implantation of the two devices inside the eye was simulated via a finite element analysis. The fluid domain was then defined by fluid dynamics simulations. In the FSI, a strong coupling between the two domains was set. The results illustrate how effectively iStent injects work to lower IOP and highlight the importance of a fluid-structure analysis. The methodology developed in this work provides a basis for the simulation of MIGS implantation and can be used as a tool for future advances and applications in particular scenarios and clinical instances.
Questa ricerca si propone di sviluppare una metodologia per simulare l'impianto di dispositivi mini-invasivi per il trattamento del glaucoma attraverso l'uso di modelli computazionali. Il glaucoma è una neuropatia ottica caratterizzata dalla progressiva degenerazione, perdita e morte delle cellule ganglionari retiniche. Il principale fattore di rischio per lo sviluppo e la progressione di questa malattia è l'elevata pressione intraoculare (PIO), mantenuta attraverso un equilibrio tra la produzione di umore acqueo da parte del corpo ciliare e il suo drenaggio attraverso le vie di deflusso. I dispositivi mini-invasivi, noti come MIGS, sono dispositivi che permettono lo sviluppo di un percorso alternativo al deflusso di umore acqueo. Classificati in base alla zona di impianto che coincide con la via di drenaggio, risultano efficaci nella riduzione della PIO e sono caratterizzati da un breve periodo di recupero del campo visivo. Offrono un'alternativa ai trattamenti tradizionali, consentendo una procedura più sicura e meno invasiva. Per supportare l’impiego clinico dei MIGS, un approccio numerico può contribuire a un'indagine a lungo termine dei dispositivi e a uno studio approfondito del meccanismo d'azione di MIGS. Questa tesi si concentra sulla costruzione di una simulazione di interazione fluido-struttura (FSI) in LS-Dyna per simulare l'impianto di due dispositivi, Istent inject, in un occhio affetto da glaucoma. L’obiettivo principale è analizzare le variazioni della PIO, della fluidodinamica dell’umore acqueo durante l'intervento chirurgico, considerando la presenza del contatto tra tessuti oculari e dispositivi, nonché l’interazione tra un dominio fluido, l’umore acqueo, e un dominio solido, la struttura oculare con gli stents impiantati. Inizialmente con un’analisi a elementi finiti è stato simulato l’impianto dei due dispositivi nell’occhio. In seguito, per definire il dominio fluido sono state condotte simulazioni di fluidodinamica. Nella FSI è stato realizzato l’accoppiamento forte tra i due domini. I risultati ottenuti evidenziano l’efficacia degli iStent inject nella riduzione della PIO e sottolineano l’importanza dell’utilizzo di un’analisi fluido-struttura. La metodologia costruita in questo lavoro delinea i requisiti fondamentali per la simulazione dell’impianto dei MIGS e costituisce un potenziale strumento per applicazioni e sviluppi futuri in particolari scenari e specifici casi clinici.
Development of a numerical methodology to model minimally-invasive glaucoma surgery implants
PERRI, LETIZIA MARIA
2022/2023
Abstract
The aim of this work is to develop a methodology which employs computational models to simulate the implantation of minimally invasive devices for the treatment of glaucoma. Glaucoma is an optic neuropathy characterized by the progressive degeneration, loss and death of retinal ganglion cells. Elevated intraocular pressure (IOP) is the primary risk factor for the developing and the progression of this disease. A balance between the ciliary body's production of aqueous humor and its drainage through the outflow pathways maintains physiological IOP values. When the eye is suffering for glaucoma, MIGS, or minimally invasive devices, allow the development of an alternative path for aqueous humor outflow. They can effectively lower IOP and are characterized by a short visual field recovery period. They are classified based on the implantation zone that corresponds to the drainage pathway. They provide a safer and less invasive technique being an alternative to conventional treatments. A comprehensive analysis of the MIGS mechanism of action and a long-term device investigation can be improved by a numerical approach, which will also support the clinical usage of MIGS. The main goal of this thesis is to build in LS-Dyna a fluid-structure interaction (FSI) simulation that simulates the implantation of two devices—Istent inject—into a glaucomatous eye. The primary objective is to investigate how the aqueous humor's fluid dynamics and IOP change during surgery, taking into account any contact between the devices and the ocular tissues, as well as the interaction between the solid domain (eyeball and stents) and the fluid domain (aqueous humor). Initially, the implantation of the two devices inside the eye was simulated via a finite element analysis. The fluid domain was then defined by fluid dynamics simulations. In the FSI, a strong coupling between the two domains was set. The results illustrate how effectively iStent injects work to lower IOP and highlight the importance of a fluid-structure analysis. The methodology developed in this work provides a basis for the simulation of MIGS implantation and can be used as a tool for future advances and applications in particular scenarios and clinical instances.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Perri_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
8.59 MB
Formato
Adobe PDF
|
8.59 MB | Adobe PDF | Visualizza/Apri |
2024_04_Perri_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
28.3 MB
Formato
Adobe PDF
|
28.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218168