The purpose of this master's thesis is to illustrate the work carried out on the titanium-sapphire laser system, located in the Diffuse Raman Spectroscopy (DIRS) laboratory of the Department of Physics at Politecnico di Milano. The laser in question, originally a commercial model, has been modified to operate in mode-locking regime: this allows the generation of trains of optical pulses, essential for the study of diffuse optics. The laser, initially completely devoid of electronic control systems, has been automated. This process was designed to have effects on multiple fronts: firstly, the execution of automatic measurements, controlled by a computer, which certainly improves repeatability, precision, and execution speed. Secondly, an electronic control apparatus enhances the laser's performance, enabling a sensitivity during the alignment and movement of optics unreachable with the manual system. The Arduino board was chosen as the automation platform: this allows a high degree of customization of the architecture, the implementation of numerous sensors, and actuators. Additionally, the microcontroller can communicate with software installed on computers through the serial port (using the UART protocol): this feature is essential for the execution of automatic measurements. Subsequently, the instrument underwent thorough characterization, especially regarding temporal coherence and wavelength stability over time. Finally, in vivo measurements were performed in the field of biophotonics, specifically in time-resolved diffuse optics. The first measurement campaign was related to NIRS (Near-Infrared Spectroscopy), a technique aimed at detecting and calculating the concentration of oxygenated haemoglobin in tissues, in our case using a single wavelength. Following that, measurements were carried out as part of a European project related to DCS (Diffuse Correlation Spectroscopy): this technique allows the study of the flow of diffusive particles, placed within a matrix. One of the biomedical applications is related to the study of blood flow within the human body. Both measurement campaigns yielded positive results, further validating the laser's performance.
Lo scopo di questa tesi magistrale è di illustrare il lavoro svolto sul sistema laser a titanio in zaffiro, presente nel laboratorio Diffuse Raman Spectroscopy (DIRS), del Dipartimento di Fisica, Politecnico di Milano. Il laser in questione, in origine un modello commerciale, è stato modificato per operare in regime di mode-locking: questo permette di generare treni di impulsi ottici, essenziali per lo studio dell’ottica diffusiva. Il laser, inizialmente completamente privo di sistemi di controllo elettronici, è stato automatizzato. Questo processo è stato pensato per avere effetti su più direttrici: prima di tutto l’esecuzione di misure automatiche, controllate da computer, che sicuramente migliorano la ripetibilità, la precisione e la velocità di esecuzione. Secondariamente un apparato di controllo elettronico migliora le prestazioni del laser, permettendo di raggiungere una sensibilità durante il processo di allineamento e movimentazione delle ottiche inarrivabile con il sistema manuale. È stata scelta la scheda Arduino come piattaforma di automazione: questa permette un elevato grado di personalizzazione dell’architettura, l’implementazione di numerosi sensori e attuatori. In aggiunta il microcontrollore può dialogare con software installati su computer, attraverso la porta seriale (utilizzando il protocollo UART): questa caratteristica è essenziale per l’esecuzione di misure automatiche. In seguito lo strumento è stato oggetto di un’approfondita caratterizzazione, soprattutto per quanto riguarda la coerenza temporale e la stabilità della lunghezza d’onda nel tempo. Infine sono state eseguite misure in vivo nell’ambito della biofotonica, nello specifico dell’ottica diffusiva tempo risolta. La prima campagna di misure è stata relativa alla NIRS (Near-Infrared Spectroscopy), una tecnica che ha l’obiettivo di rilevare e calcolare la concentrazione di emoglobina ossigenata nei tessuti, nel nostro caso attraverso l’uso di una sola lunghezza d’onda. In seguito sono state eseguite misure nell’ambito di un progetto europeo, relativo alla DCS (Diffuse Correlation Spectroscopy): questa tecnica permette lo studio del flusso di particelle diffusive, poste all’interno di una matrice. Una delle applicazioni biomediche è relativa allo studio del flusso sanguigno all’interno del corpo umano. Entrambe le campagne di misura hanno dato esito positivo, validando ulteriormente le prestazioni del laser.
Automation of a titanium sapphire laser for time-domain diffuse optics
SANGALLI, FRANCESCO
2023/2024
Abstract
The purpose of this master's thesis is to illustrate the work carried out on the titanium-sapphire laser system, located in the Diffuse Raman Spectroscopy (DIRS) laboratory of the Department of Physics at Politecnico di Milano. The laser in question, originally a commercial model, has been modified to operate in mode-locking regime: this allows the generation of trains of optical pulses, essential for the study of diffuse optics. The laser, initially completely devoid of electronic control systems, has been automated. This process was designed to have effects on multiple fronts: firstly, the execution of automatic measurements, controlled by a computer, which certainly improves repeatability, precision, and execution speed. Secondly, an electronic control apparatus enhances the laser's performance, enabling a sensitivity during the alignment and movement of optics unreachable with the manual system. The Arduino board was chosen as the automation platform: this allows a high degree of customization of the architecture, the implementation of numerous sensors, and actuators. Additionally, the microcontroller can communicate with software installed on computers through the serial port (using the UART protocol): this feature is essential for the execution of automatic measurements. Subsequently, the instrument underwent thorough characterization, especially regarding temporal coherence and wavelength stability over time. Finally, in vivo measurements were performed in the field of biophotonics, specifically in time-resolved diffuse optics. The first measurement campaign was related to NIRS (Near-Infrared Spectroscopy), a technique aimed at detecting and calculating the concentration of oxygenated haemoglobin in tissues, in our case using a single wavelength. Following that, measurements were carried out as part of a European project related to DCS (Diffuse Correlation Spectroscopy): this technique allows the study of the flow of diffusive particles, placed within a matrix. One of the biomedical applications is related to the study of blood flow within the human body. Both measurement campaigns yielded positive results, further validating the laser's performance.File | Dimensione | Formato | |
---|---|---|---|
ExecutiveSummary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary Sangalli
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
MasterThesis.pdf
accessibile in internet per tutti
Descrizione: Master Thesis
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218190