Bicuspid aortic valve (BAV) is a congenital valve disease which affects 2% of the world's population and causes altered hemodynamics that accelerates the process of calcific degenerative stenosis (CAVS). Until recently, the only definitive treatment for CAVS was surgical aortic valve replacement (SAVR), which is a highly invasive treatment. For this reason, transcatheter aortic valve implantation (TAVI) emerged as an alternative approach thanks to its minimal invasiveness. TAVI complications are difficult to foresee due to patients' anatomical-variability, therefore patient-specific computational simulations represent a powerful tool to acquire predictive insights into potential outcomes. As patient-specific computational modelling in patients with BAV has received limited attention, the goal of this thesis is to simulate the TAVI technique conducting finite element (FE) simulations in individuals with type 1 BAV. The models aim to accurately reproduce the valve's position within five patient-specific anatomies and to assess the impact of different native valve morphologies on the procedural success. The patient-specific models were reconstructed from pre-operative contrast-enhanced CT images and discretized. The native valve of each patient, in bicuspid and tricuspid configuration, was also drawn in order to evaluate the impact of valve different morphologies. As for the prosthetic devices, AcurateNeo2 and the Evolut R valves were reconstructed in different sizes. The positioning of the device inside the aortic root was performed according to intra-procedural angiographic view and the FE simulations were carried out using LS-DYNA software. For each patient, the von Mises stress on the aortic wall, on the native leaflets and on the stent was analysed. The distribution and magnitude on the aorta were similar in the bicuspid and tricuspid native valve cases. On the contrary, significant differences were observed on the stresses acting on the native cusps and on the stent of the prosthetic device, showing higher stress values in bicuspid valve cases. For these reasons, our work could represent a valuable starting point for the study of the TAVI procedure in patients with bicuspid aortic valve, with the aim of futher optimizing their treatment. Future developments of this work will include the performance of fluid dynamics and fluid-structure interaction simulations.
La valvola aortica bicuspide (BAV) è una malattia valvolare congenita che colpisce il 2% della popolazione mondiale e causa un'alterazione dell'emodinamica che accelera il processo di stenosi degenerativa calcifica (CAVS). Fino a poco tempo fa, l'unico trattamento definitivo per la CAVS era la sostituzione chirurgica della valvola aortica (SAVR), che è un trattamento altamente invasivo. Per questo motivo, l'impianto transcatetere della valvola aortica (TAVI) è emerso come approccio alternativo grazie alla sua minima invasività. Le complicanze della TAVI sono difficili da prevedere a causa della variabilità anatomica dei pazienti, pertanto le simulazioni computazionali paziente-specifiche rappresentano un potente strumento per acquisire conoscenze predittive sui potenziali esiti. Poiché la modellazione computazionale paziente-specifica nei pazienti con BAV ha ricevuto un'attenzione limitata, l'obiettivo di questa tesi è quello di simulare la tecnica TAVI conducendo simulazioni agli elementi finiti (FE) in individui con BAV di tipo 1. I modelli mirano a riprodurre accuratamente la posizione della valvola in cinque anatomie paziente-specifiche e a valutare l'impatto delle diverse morfologie della valvola nativa sul successo della procedura. I modelli paziente-specifici sono stati ricostruiti da immagini TC pre-operatorie con contrasto e discretizzati. È stata ricostruita anche la valvola nativa di ciascun paziente, in configurazione bicuspide e tricuspide, per valutare l'impatto delle diverse morfologie valvolari. Per quanto riguarda i dispositivi protesici, le valvole AcurateNeo2 e Evolut R sono state ricostruite in diverse taglie. Il posizionamento del dispositivo all'interno della radice aortica è stato eseguito in base alla vista angiografica intra-procedurale e le simulazioni FE sono state eseguite utilizzando il software LS-DYNA. Per ogni paziente è stato analizzato lo stress di von Mises sulla parete aortica, sui foglietti nativi e sullo stent. La distribuzione e l'entità dello sforzo sull'aorta sono risultati simili nei casi di valvola nativa bicuspide e tricuspide. Al contrario, sono state osservate differenze significative nelle sollecitazioni che agiscono sui foglietti nativi e sullo stent del dispositivo protesico, mostrando valori di sollecitazione più elevati nei casi di valvola bicuspide. Per questi motivi, il nostro lavoro potrebbe rappresentare un valido punto di partenza per lo studio della procedura TAVI nei pazienti con valvola aortica bicuspide, con l'obiettivo di ottimizzare ulteriormente il loro trattamento. I futuri sviluppi di questo lavoro includeranno l'esecuzione di simulazioni fluidodinamiche e di interazione fluido-struttura.
On the effect of different valve morphologies in TAVI patient-specific simulations
GEROSA, LUCA;Forte, Chiara
2023/2024
Abstract
Bicuspid aortic valve (BAV) is a congenital valve disease which affects 2% of the world's population and causes altered hemodynamics that accelerates the process of calcific degenerative stenosis (CAVS). Until recently, the only definitive treatment for CAVS was surgical aortic valve replacement (SAVR), which is a highly invasive treatment. For this reason, transcatheter aortic valve implantation (TAVI) emerged as an alternative approach thanks to its minimal invasiveness. TAVI complications are difficult to foresee due to patients' anatomical-variability, therefore patient-specific computational simulations represent a powerful tool to acquire predictive insights into potential outcomes. As patient-specific computational modelling in patients with BAV has received limited attention, the goal of this thesis is to simulate the TAVI technique conducting finite element (FE) simulations in individuals with type 1 BAV. The models aim to accurately reproduce the valve's position within five patient-specific anatomies and to assess the impact of different native valve morphologies on the procedural success. The patient-specific models were reconstructed from pre-operative contrast-enhanced CT images and discretized. The native valve of each patient, in bicuspid and tricuspid configuration, was also drawn in order to evaluate the impact of valve different morphologies. As for the prosthetic devices, AcurateNeo2 and the Evolut R valves were reconstructed in different sizes. The positioning of the device inside the aortic root was performed according to intra-procedural angiographic view and the FE simulations were carried out using LS-DYNA software. For each patient, the von Mises stress on the aortic wall, on the native leaflets and on the stent was analysed. The distribution and magnitude on the aorta were similar in the bicuspid and tricuspid native valve cases. On the contrary, significant differences were observed on the stresses acting on the native cusps and on the stent of the prosthetic device, showing higher stress values in bicuspid valve cases. For these reasons, our work could represent a valuable starting point for the study of the TAVI procedure in patients with bicuspid aortic valve, with the aim of futher optimizing their treatment. Future developments of this work will include the performance of fluid dynamics and fluid-structure interaction simulations.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Forte_Gerosa_01.pdf
non accessibile
Descrizione: testo tesi
Dimensione
15.69 MB
Formato
Adobe PDF
|
15.69 MB | Adobe PDF | Visualizza/Apri |
2024_04_Forte_Gerosa_02.pdf
non accessibile
Descrizione: executive summary
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218228