Carbon Atomic Wires (CAWs) are linear carbon chains which consist solely of sp- hybridized carbon atoms and are one of the most intriguing and least investigated carbon allotropes. Despite their promising theoretically predicted mechanical, optical, and electronic properties, CAWs are not widely utilized due to their tendency to undergo crosslinking reactions and to form more stable sp2 structures. Therefore, research is focusing on the synthesis of high-length CAWs and on the development of various techniques to successfully stabilize them. The aim of this thesis is to investigate the stability of both chemically and physically synthesized CAWs, embedded in polymeric thin films or electrospun nanofibers, in water-based environments with various acidity (i.e., pH = 2, 7, 12). This research would be beneficial for potential applications like underwater sensors, electrochemical cells, antifouling coatings, water purification membranes, and biological applications. The stability of these polymeric-CAWs nanocomposites was monitored over time using Raman spectroscopy. However, CAWs produced by Pulsed Laser Ablation in Liquid (PLAL) are low concentrated (≈ 10-6 mol/L) and cannot be detected by conventional Raman spectroscopy. Therefore, their stability was monitored employing the Surface Enhanced Raman Scattering (SERS) technique, which amplifies the Raman signals of low concentrated molecules by utilizing metallic (silver) nanoparticles (AgNPs) as signal enhancers. To successfully perform SERS measurements of CAWs embedded in PMMA thin films/nanofibers, various methods were investigated. Among the investigated methods, four techniques showed successful SERS detection of polyynes embedded in PMMA: incorporation of AgNPs produced by chemical reduction in (i) water, (ii) Dimethyl sulfoxide (DMSO), and (iii) PMMA solution in N,N- Dimethylformamide (DMF)/Acetone inside films as well as (iv) direct deposition of AgNPs, produced in water, on the top surface of already produced polyyne/PMMA nanocomposites. The last method was used for further experiments since it allows to decouple the stabilization enhancement provided by polymer from the stabilization provided by nanoparticles. In addition, AgNPs are not stable in acidic conditions, which might have posed some issues using nanoparticles embedded inside polymer when monitoring the stability in pH 2 environments. I also measured the CAWs stability by directly dissolving them (i.e., no embedding within the polymeric matrix) in the various environments by means of Uv-vis spectroscopy. It was found that CAWs are indeed quite unstable in the environments, with full degradation ranging from a couple of minutes to few weeks, depending on the environment and the molecule. On the contrary, by embedding chemically produced CAWs in the polymeric matrices they were successfully stabilized up to at least several months for both films and fibers and for all the studied environments. Similar results are obtained for PLAL synthesized CAWs, where the SERS signal was still present after at least 3 months in the case of the mixture of polyynes and after 2 months in the case of the size-separated HC8H and HC12H for both films and fibers in all of the environments. Therefore, it was proved, that polymeric matrix can successfully protect CAWs even in destructive water-based environments, which might open up possibilities in their usage in diverse applications.
I fili atomici di carbonio (CAWs) sono catene di carbonio lineari che consistono esclusivamente di atomi di carbonio ibridati sp e sono uno degli allotropi di carbonio più intriganti e meno indagati. Nonostante le loro promettenti proprietà meccaniche, ottiche ed elettroniche predette teoricamente, i CAWs non sono ampiamente utilizzati a causa della loro tendenza a subire reazioni di reticolazione e a formare strutture più stabili (i.e., sp2). Pertanto, la ricerca è focalizzata sulla sintesi di CAWs di elevata lunghezza e sullo sviluppo di varie tecniche per stabilizzarli con successo. Lo scopo di questa tesi è investigare la stabilità dei CAWs sia sintetizzati chimicamente che fisicamente, incorporati in film sottili polimerici o nanofibre elettrofilate, in ambienti acquosi con varie acidità (pH = 2, 7, 12). Questa ricerca è utile per potenziali applicazioni come sensori subacquei, celle elettrochimiche, rivestimenti antivegetativi, membrane di purificazione dell'acqua e applicazioni biologiche. La stabilità di questi nanocompositi polimerici-CAWs è stata monitorata nel tempo utilizzando la spettroscopia Raman. Tuttavia, i CAWs prodotti mediante Ablazione Laser Pulsata in Liquido (PLAL) sono a bassa concentrazione (≈ 10-6 mol/L) e non possono essere rilevati dalla spettroscopia Raman convenzionale. Pertanto, la loro stabilità è stata monitorata impiegando la tecnica di scattering Raman potenziata dalla superficie (SERS), che amplifica i segnali Raman delle molecole a bassa concentrazione utilizzando nanoparticelle metalliche (argento) come potenziatori del segnale. Per effettuare con successo misurazioni SERS di CAWs incorporati in film sottili di PMMA, sono state investigate varie metodologie. Tra i metodi esaminati, quattro tecniche hanno mostrato con successo la rilevazione SERS di CAWs incorporati in PMMA: incorporazione di AgNPs prodotte mediante riduzione chimica in (i) acqua, (ii) dimetilsolfossido (DMSO), e (iii) soluzione di PMMA in N,N-Dimetilformammide (DMF)/Acetone all'interno dei film così come (iv) deposizione diretta di AgNPs, prodotte in acqua, sulla superficie dei nanocompositi di CAWs/PMMA già prodotti. L'ultimo metodo è stato utilizzato per ulteriori esperimenti poiché consente di separare l'aumento della stabilizzazione fornita dal polimero dall'effetto di stabilizzazione fornito dalle nanoparticelle. Inoltre, le AgNPs non sono stabili in condizioni acide, il che potrebbe creare alcuni problemi utilizzando nanoparticelle incorporate nel polimero durante il monitoraggio della stabilità in ambienti a pH 2. Ho anche misurato la stabilità dei CAWs sciogliendoli direttamente (senza incorporarli nella matrice polimerica) nei vari ambienti mediante spettroscopia Uv-vis. Si è scoperto che i CAWs sono piuttosto instabili negli ambienti acquosi, con completa degradazione ottenuta in un range temporale che varia da un paio di minuti a poche settimane, a seconda dell'ambiente e della molecola. Al contrario, incorporando i CAWs prodotti chimicamente nelle matrici polimeriche, essi sono stati stabilizzati con successo fino a diversi mesi sia per film che per le fibre e per tutti gli ambienti studiati. Risultati simili sono stati ottenuti per i CAWs sintetizzati mediante PLAL, dove il segnale SERS era ancora presente dopo almeno 3 mesi nel caso delle miscele e dopo 2 mesi nel caso dei HC8H e HC12H separati per dimensioni, sia per i film che per le fibre in tutti gli ambienti. Pertanto, è stato dimostrato che la matrice polimerica può proteggere con successo i CAWs anche negli ambienti distruttivi acquosi, il che potrebbe aprire possibilità nel loro utilizzo in diverse applicazioni.
Embedding of CAWs within PMMA films and electrospun nanofibers to enhance their stability in water, acidic, and alkaline environments
Zhdanov, Egor
2023/2024
Abstract
Carbon Atomic Wires (CAWs) are linear carbon chains which consist solely of sp- hybridized carbon atoms and are one of the most intriguing and least investigated carbon allotropes. Despite their promising theoretically predicted mechanical, optical, and electronic properties, CAWs are not widely utilized due to their tendency to undergo crosslinking reactions and to form more stable sp2 structures. Therefore, research is focusing on the synthesis of high-length CAWs and on the development of various techniques to successfully stabilize them. The aim of this thesis is to investigate the stability of both chemically and physically synthesized CAWs, embedded in polymeric thin films or electrospun nanofibers, in water-based environments with various acidity (i.e., pH = 2, 7, 12). This research would be beneficial for potential applications like underwater sensors, electrochemical cells, antifouling coatings, water purification membranes, and biological applications. The stability of these polymeric-CAWs nanocomposites was monitored over time using Raman spectroscopy. However, CAWs produced by Pulsed Laser Ablation in Liquid (PLAL) are low concentrated (≈ 10-6 mol/L) and cannot be detected by conventional Raman spectroscopy. Therefore, their stability was monitored employing the Surface Enhanced Raman Scattering (SERS) technique, which amplifies the Raman signals of low concentrated molecules by utilizing metallic (silver) nanoparticles (AgNPs) as signal enhancers. To successfully perform SERS measurements of CAWs embedded in PMMA thin films/nanofibers, various methods were investigated. Among the investigated methods, four techniques showed successful SERS detection of polyynes embedded in PMMA: incorporation of AgNPs produced by chemical reduction in (i) water, (ii) Dimethyl sulfoxide (DMSO), and (iii) PMMA solution in N,N- Dimethylformamide (DMF)/Acetone inside films as well as (iv) direct deposition of AgNPs, produced in water, on the top surface of already produced polyyne/PMMA nanocomposites. The last method was used for further experiments since it allows to decouple the stabilization enhancement provided by polymer from the stabilization provided by nanoparticles. In addition, AgNPs are not stable in acidic conditions, which might have posed some issues using nanoparticles embedded inside polymer when monitoring the stability in pH 2 environments. I also measured the CAWs stability by directly dissolving them (i.e., no embedding within the polymeric matrix) in the various environments by means of Uv-vis spectroscopy. It was found that CAWs are indeed quite unstable in the environments, with full degradation ranging from a couple of minutes to few weeks, depending on the environment and the molecule. On the contrary, by embedding chemically produced CAWs in the polymeric matrices they were successfully stabilized up to at least several months for both films and fibers and for all the studied environments. Similar results are obtained for PLAL synthesized CAWs, where the SERS signal was still present after at least 3 months in the case of the mixture of polyynes and after 2 months in the case of the size-separated HC8H and HC12H for both films and fibers in all of the environments. Therefore, it was proved, that polymeric matrix can successfully protect CAWs even in destructive water-based environments, which might open up possibilities in their usage in diverse applications.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Zhdanov_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Text of the thesis
Dimensione
7.6 MB
Formato
Adobe PDF
|
7.6 MB | Adobe PDF | Visualizza/Apri |
2024_04_Zhdanov_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive summary of the thesis
Dimensione
957.11 kB
Formato
Adobe PDF
|
957.11 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218245