This thesis explores innovative approaches to time series data recognition, crucial in diverse scientific and practical fields such as finance, medicine, and agriculture. The goal is to improve efficiency in classification and clustering by comparing traditional techniques with a novel approach that transforms time series into networks. This method, exploiting the Visibility Algorithm, converts time series data into graphs, addressing the inherent issues of time series analysis such as temporal dependencies, correlation, and noise. EgoDist, a new metric for measuring dissimilarities within graphs, was introduced and evaluated against conventional distance metrics like Euclidean and Pearson distances. By analyzing 90 synthetically generated time series, the research demonstrates that network-based analysis, particularly through the Visibility Algorithm and EgoDist, significantly enhances classification and clustering outcomes. This innovative approach bypasses traditional challenges by leveraging complex network theory, allowing to determine whether time series are derived from the same originating process. By taking into account the structural properties of time series, along with the temporal structure, superior insights into the underlying patterns of time series data are provided. The findings highlight the potential of network transformation and analysis techniques in offering advancements in time series analysis, making a notable contribution to the field by presenting a robust alternative to conventional methodologies.
Questa tesi esplora approcci innovativi al riconoscimento dei dati delle serie temporali, cruciale in diversi ambiti scientifici e pratici come la finanza, la medicina e l'agricoltura. L'obiettivo é quello di migliorare l'efficienza nella classificazione e nel clustering confrontando tecniche tradizionali con un nuovo approccio che trasforma le serie temporali in grafi. Questo metodo, sfruttando l'Algoritmo di Visibilità, converte le serie temporali in reti, affrontando problemi intrinseci dell'analisi delle serie temporali quali dipendenze temporali, correlazione e presenza di rumore. EgoDist, una nuova metrica per misurare le dissimilarità all'interno dei grafici, è stata introdotta e valutata contro metriche di distanza convenzionali come le distanze Euclidea e di Pearson. Analizzando 90 serie temporali generate sinteticamente, la ricerca dimostra che l'analisi basata su reti, in particolare attraverso l'Algoritmo di Visibilità ed EgoDist, migliora significativamente i risultati di classificazione e clustering. Questo approccio innovativo supera le sfide tradizionali sfruttando la teoria delle reti complesse, permettendo di determinare se le serie temporali derivano dallo stesso processo. Tenendo conto delle proprietà strutturali delle serie temporali, insieme alla struttura temporale, vengono fornite intuizioni superiori sui modelli sottostanti delle serie temporali. I risultati evidenziano la potenzialità delle tecniche di trasformazione e successiva analisi delle reti, apportando un contributo notevole al campo e presentando un'alternativa robusta alle metodologie convenzionali.
Time series recognition via Visibility Graph
Schembri, Chiara
2022/2023
Abstract
This thesis explores innovative approaches to time series data recognition, crucial in diverse scientific and practical fields such as finance, medicine, and agriculture. The goal is to improve efficiency in classification and clustering by comparing traditional techniques with a novel approach that transforms time series into networks. This method, exploiting the Visibility Algorithm, converts time series data into graphs, addressing the inherent issues of time series analysis such as temporal dependencies, correlation, and noise. EgoDist, a new metric for measuring dissimilarities within graphs, was introduced and evaluated against conventional distance metrics like Euclidean and Pearson distances. By analyzing 90 synthetically generated time series, the research demonstrates that network-based analysis, particularly through the Visibility Algorithm and EgoDist, significantly enhances classification and clustering outcomes. This innovative approach bypasses traditional challenges by leveraging complex network theory, allowing to determine whether time series are derived from the same originating process. By taking into account the structural properties of time series, along with the temporal structure, superior insights into the underlying patterns of time series data are provided. The findings highlight the potential of network transformation and analysis techniques in offering advancements in time series analysis, making a notable contribution to the field by presenting a robust alternative to conventional methodologies.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Schembri.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218247