Waste from Electrical and Electronic Equipment (WEEE) is an extremely heterogeneous and complex waste category to manage. In addition to various humantoxic substances, WEEE contains a high quantity of base and precious metals, making it an alternative resource to depleting natural reserves. This thesis, conducted at Chalmers University of Technology in Sweden, aimed to test different solvents, already employed in hydrometallurgical processes in the nuclear field, for separating metals contained in printed circuit board (PCB) electronics. The primary objective was to recover gold, the most valuable component, and bismuth, a critical metal found in modern electronic boards as a lead substitute. The first part of the study involved the characterization of electronic boards: a batch of old PCB modules was shredded, sieved, and the fragment were sorted by size. Subsequently, a representative sample of each dimensional class was dissolved through acid digestion and measured by optical emission spectroscopy. The elemental analysis of the representative samples enabled to assess that metals are distributed across all the size classes with no single metal species accumulating in any specific dimensional class more than 30%. Moreover, the work done highlighted the relevance of a pre-treatment able to separate the metallic from the non-metallic components thereby minimizing the volume of material processed and the quantity of reagents needed. The second part focused on extracting metals from chloride-based aqueous solutions, examining the behaviour of some organic extractants, typically employed in the advanced reprocessing of spent nuclear fuel. Moreover, innovative eco-sustainable diluents were used in place of the conventional petrochemical ones, such as dimethyl octanol, a biodegradable alcohol, eucalyptol, a natural ether, and hydrogenated vegetable oil (HVO 100), a second-generation biodiesel. The extractants were tested in combination with the diluents on different aqueous feeds: simpler ones containing only bismuth and zinc and more complex mixtures including gold along with the most abundant metals present in electronic boards, such as copper, zinc, iron, and aluminium. The experiments were reproduced in presence of sodium chloride and choline chloride in the aqueous phase to assess the impact of chloride concentration variations on extraction efficiency. Significant differences in extraction efficiency were observed when sodium chloride or choline chloride were present in the aqueous phase. The findings indicated that bismuth could be separated from zinc at specific chloride concentrations, selectively extracting the zinc into the organic phase. While the recovery of gold was hampered by the co-extraction of iron. Future research should focus on developing methods to separate gold from iron, through selective dissolution of electronic boards, by preventing iron extraction with masking agents, or selectively re-extracting gold into a new aqueous phase.
I Rifiuti di Apparecchiature Elettriche ed Elettroniche (RAEE) sono una categoria di rifiuti estremamente eterogenea e complicata da smaltire. Oltre a diverse sostanze tossiche per l’uomo nei RAEE è presente un elevata quantità di metalli base e metalli preziosi che li rendono una risorsa alternativa alle riserve naturali in esaurimento. In questo lavoro di tesi, svolto presso la Chalmers University of Technology in Svezia, si sono voluti testare diversi solventi, già utilizzati nei processi idrometallurgici in campo nucleare, per separare i metalli contenuti nelle schede elettroniche a circuito stampato (PCB). L'obiettivo principale era recuperare l'oro, il componente più prezioso, ed il bismuto, metallo critico presente nelle schede elettroniche più recenti in sostituzione del piombo. La prima parte dello studio ha coinvolto la caratterizzazione delle schede elettroniche: un lotto di vecchi moduli PCB è stato triturato, setacciato e i frammenti sono stati ordinati per dimensione. Successivamente, un campione rappresentativo di ogni classe dimensionale è stato sciolto tramite digestione acida e analizzato mediante spettrometria a emissione ottica. L'analisi elementare dei campioni rappresentativi ha rivelato che i metalli sono distribuiti lungo tutte le classi dimensionali e nessuna specie metallica si accumula in una classe dimensionale specifica per più del 30%. Inoltre, il lavoro ha evidenziato l'importanza di un pretrattamento capace di separare i componenti metallici da quelli non metallici, riducendo così il volume di materiale trattato e la quantità di reagenti necessaria. La seconda parte si è concentrata sull'estrazione dei metalli da soluzioni acquose clorurate, esaminando il comportamento di alcuni estraenti organici, tipicamente impiegati nel trattamento avanzato del combustibile nucleare esausto. Inoltre, sono stati utilizzati diluenti eco-sostenibili innovativi al posto di quelli petrochimici convenzionali, come il dimetil ottanolo, un alcol biodegradabile, l'eucaliptolo, un etere naturale, e l'olio vegetale idrogenato (HVO 100), un biodiesel di seconda generazione. Gli estraenti sono stati testati in combinazione con i diluenti su diverse fasi acquose: alcune più semplici contenenti unicamente bismuto e zinco ed altre più complesse che includevano oro insieme ai metalli più abbondanti presenti nelle schede elettroniche, come rame, zinco, ferro e alluminio. Gli esperimenti sono stati riprodotti in presenza di cloruro di sodio e cloruro di colina nella fase acquosa per valutare l'impatto della variazione di concentrazione di cloruro sull'efficienza di estrazione. Differenze significative nell'efficienza di estrazione sono state osservate in presenza di cloruro di sodio o del cloruro di colina nella fase acquosa. I risultati hanno indicato che è possibile separare il bismuto dallo zinco in corrispondenza di specifiche concentrazioni di cloruro, estraendo selettivamente lo zinco nella fase organica. Mentre il recupero dell'oro è stato ostacolato dalla co-estrazione del ferro. Le future ricerche dovrebbero concentrarsi sullo sviluppo di metodi per separare l'oro dal ferro, attraverso la dissoluzione selettiva delle schede elettroniche, evitando l'estrazione del ferro con agenti mascheranti, oppure re-estraendo selettivamente l’oro in una nuova fase acquosa.
Sustainable recycling of valuable metals from e-waste via solvent extraction
Mariotti, Gloria
2022/2023
Abstract
Waste from Electrical and Electronic Equipment (WEEE) is an extremely heterogeneous and complex waste category to manage. In addition to various humantoxic substances, WEEE contains a high quantity of base and precious metals, making it an alternative resource to depleting natural reserves. This thesis, conducted at Chalmers University of Technology in Sweden, aimed to test different solvents, already employed in hydrometallurgical processes in the nuclear field, for separating metals contained in printed circuit board (PCB) electronics. The primary objective was to recover gold, the most valuable component, and bismuth, a critical metal found in modern electronic boards as a lead substitute. The first part of the study involved the characterization of electronic boards: a batch of old PCB modules was shredded, sieved, and the fragment were sorted by size. Subsequently, a representative sample of each dimensional class was dissolved through acid digestion and measured by optical emission spectroscopy. The elemental analysis of the representative samples enabled to assess that metals are distributed across all the size classes with no single metal species accumulating in any specific dimensional class more than 30%. Moreover, the work done highlighted the relevance of a pre-treatment able to separate the metallic from the non-metallic components thereby minimizing the volume of material processed and the quantity of reagents needed. The second part focused on extracting metals from chloride-based aqueous solutions, examining the behaviour of some organic extractants, typically employed in the advanced reprocessing of spent nuclear fuel. Moreover, innovative eco-sustainable diluents were used in place of the conventional petrochemical ones, such as dimethyl octanol, a biodegradable alcohol, eucalyptol, a natural ether, and hydrogenated vegetable oil (HVO 100), a second-generation biodiesel. The extractants were tested in combination with the diluents on different aqueous feeds: simpler ones containing only bismuth and zinc and more complex mixtures including gold along with the most abundant metals present in electronic boards, such as copper, zinc, iron, and aluminium. The experiments were reproduced in presence of sodium chloride and choline chloride in the aqueous phase to assess the impact of chloride concentration variations on extraction efficiency. Significant differences in extraction efficiency were observed when sodium chloride or choline chloride were present in the aqueous phase. The findings indicated that bismuth could be separated from zinc at specific chloride concentrations, selectively extracting the zinc into the organic phase. While the recovery of gold was hampered by the co-extraction of iron. Future research should focus on developing methods to separate gold from iron, through selective dissolution of electronic boards, by preventing iron extraction with masking agents, or selectively re-extracting gold into a new aqueous phase.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Mariotti_Tesi_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
4.03 MB
Formato
Adobe PDF
|
4.03 MB | Adobe PDF | Visualizza/Apri |
2024_04_Mariotti_Executive summary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218279