Acute Respiratory Failure (ARF) is a life-threatening condition, which develops quickly and often with minimal warnings. Mechanical Ventilation (MV) is essential for managing ARF, offering respiratory support. Nowadays, the patient receives first assistance mainly by healthcare professionals, either at the hospital or in the field. Fast intervention is crucial to reduce mortality and intubation rate; for this reason, there is a growing need to expand respiratory assistance beyond healthcare providers, prompting the development of portable and simple devices. This work presents a fluid dynamic analysis of an innovative portable CPAP (Continuous Positive Airways Pressure) device, designed to be user-friendly and quickly provide respiratory support. Using Computational Fluid Dynamics (CFD) simulations, the flow patterns within the device were analyzed to investigate its performance. After the device characterisation and the numerical model validation, the fluid dynamics of the device was assessed, focusing on key parameters such as velocity field, pressure gradients and turbulence. Moreover, the work investigated the impact of internal geometry modifications on the fluid dynamics characteristics, to potentially regularise the flow and improve therapy delivery. The provided prototype generates a flow with an evident vortical pathway, caused by the asymmetry between the inlet and outlet ducts and enhanced by the presence of a flow diverter placed within the device. The vortex is responsible for a significant velocity skewness and flow non-homogeneity, which were evaluated through specific metrics. The removal of the hindrances or the change in their shapes and locations positively impacted on the flow regularisation, by reducing skewness and increasing homogeneity, thus improving the therapy effectiveness.
L’Insufficienza Respiratoria Acuta (IRA) è una condizione critica che può peggiorare rapidamente e con poco preavviso. La Ventilazione Meccanica (VM) è fondamentale nella gestione dell’ARF, offrendo supporto respiratorio. Ad oggi, il paziente riceve assistenza principalmente da operatori sanitari, o in ospedale o sul luogo. Intervenire velocemente può essere determinante per ridurre la mortalità e il tasso di intubazione; per questa ragione, c’è la necessità di espandere l’assistenza respiratoria al di là dei professionisti sanitari, promuovendo lo sviluppo di dispositivi portatili e facili da usare. Questo lavoro presenta un’analisi della fluidodinamica di un dispositivo innovativo portatile CPAP (Continuous Positive Airways Pressure), progettato per essere user-friendly e fornire assistenza rapidamente. Diverse simulazioni di fluidodinamica computazionale (CFD) sono state condotte per studiare le caratteristiche del flusso d’aria all’interno del dispositivo e valutarne le prestazioni. Dopo aver caratterizzato il dispositivo e validato il modello numerico, la fluidodinamica interna del dispositivo è stata analizzata e valutata, focalizzandosi su parametri chiave come la distribuzione delle velocità, i gradienti pressori e la turbolenza. Inoltre, lo studio ha investigato come modifiche alla geometria interna impattano sulle caratteristiche fluidodinamiche, con lo scopo di regolarizzare il flusso e migliorare la somministrazione della terapia. Il prototipo fornito genera un flusso con un evidente tracciato vorticoso, causato dall’asimmetria tra i condotti di ingresso e uscita e intensificato dalla presenza di un deviatore di flusso posizionato all’interno del dispositivo. Il vortice è resposanbile di un’elevata deviazione delle velocità e di una disomogeneità del flusso, caratteristiche che sono state valutate attraverso specifici parametri. La rimozione o la modifica della forma o della posizione degli ostacoli impatta positivamente sulla regolarizzazione del flusso, riducendo l’asimmetria del flusso e aumentandone l’omogeneità, migliorando di conseguenza l’efficacia della terapia.
Computational fluid dynamics-aided design of an innovative respiratory support device
SERINO, FEDERICO
2022/2023
Abstract
Acute Respiratory Failure (ARF) is a life-threatening condition, which develops quickly and often with minimal warnings. Mechanical Ventilation (MV) is essential for managing ARF, offering respiratory support. Nowadays, the patient receives first assistance mainly by healthcare professionals, either at the hospital or in the field. Fast intervention is crucial to reduce mortality and intubation rate; for this reason, there is a growing need to expand respiratory assistance beyond healthcare providers, prompting the development of portable and simple devices. This work presents a fluid dynamic analysis of an innovative portable CPAP (Continuous Positive Airways Pressure) device, designed to be user-friendly and quickly provide respiratory support. Using Computational Fluid Dynamics (CFD) simulations, the flow patterns within the device were analyzed to investigate its performance. After the device characterisation and the numerical model validation, the fluid dynamics of the device was assessed, focusing on key parameters such as velocity field, pressure gradients and turbulence. Moreover, the work investigated the impact of internal geometry modifications on the fluid dynamics characteristics, to potentially regularise the flow and improve therapy delivery. The provided prototype generates a flow with an evident vortical pathway, caused by the asymmetry between the inlet and outlet ducts and enhanced by the presence of a flow diverter placed within the device. The vortex is responsible for a significant velocity skewness and flow non-homogeneity, which were evaluated through specific metrics. The removal of the hindrances or the change in their shapes and locations positively impacted on the flow regularisation, by reducing skewness and increasing homogeneity, thus improving the therapy effectiveness.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Serino_Thesis_01.pdf
solo utenti autorizzati dal 20/03/2025
Descrizione: Thesis
Dimensione
21.55 MB
Formato
Adobe PDF
|
21.55 MB | Adobe PDF | Visualizza/Apri |
2024_04_Serino_Executive_Summary_02.pdf
solo utenti autorizzati dal 20/03/2025
Descrizione: Executive Summary
Dimensione
59.88 MB
Formato
Adobe PDF
|
59.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218311