Alzheimer’s disease is the principal form of dementia worldwide, accounting for the majority of the cases. Most forms of dementia, including Alzheimer’s, stem from the accumulation of misfolded prion-like proteins, leading to neuronal degeneration and brain atrophy. This study proposes a mathematical model for brain atrophy induced by the spreading of misfolded τ-proteins, together with its numerical discretization. The mathematical model entails a Fisher- Kolmogorov equation describing the spreading of the proteins coupled with a linear elasticity equation describing the atrophy process. These equations are coupled via the logistic law governing brain volume reduction. To effectively manage the complexity of the domain the spatial discretization is based on employing the Polygonal Discontinuous Galerkin method on polygonal/polyhedral grids and the θ-method for time integration. This thesis presents the mathematical model and discusses its features as well as the discretization strategies utilized. Additionally, convergence results are presented to validate the model, alongside some simulations conducted on a simplified domain and on a real brain geometry.
L’Alzheimer è una delle principali forme di demenza al mondo e ne costituisce gran parte dei casi. La maggior parte delle forme di demenza, tra cui l’Alzheimer, derivano da proteine prioniche danneggiate, il cui accumulo porta alla degenerazione dei neuroni e all’atrofia del cervello. Questo studio propone un modello matematico per l’atrofia del cervello causata dalla diffusione di proteine τ danneggiate, insieme alla sua discretizzazione numerica. Il modello matematico è costituito da un’equazione di Fisher-Kolmogorov per descrivere la diffusione delle proteine accoppiata un’equazione di elasticità lineare per l’atrofia. Queste equazioni sono poi accoppiate tramite una legge logistica che descrive la riduzione di volume del cervello. Per gestire efficacemente le complessità del dominio la discretizzazione spaziale è basata sull’implementazione di un metodo di Galerkin Discontinuo Poligonale su griglie poligonali/poliedriche e un metodo θ per l’integrazione temporale. Questa tesi presenta le caratteristiche del modello matematico e le strategie di discretizzazione utilizzate. Infine, vengono riportati risultati di convergenza a validazione del modello, insieme a delle simulazione eseguite su un dominio semplificato e su una geometria reale del cervello.
A mathematical model of brain atrophy in Alzheimer's disease
PEDERZOLI, VALENTINA
2022/2023
Abstract
Alzheimer’s disease is the principal form of dementia worldwide, accounting for the majority of the cases. Most forms of dementia, including Alzheimer’s, stem from the accumulation of misfolded prion-like proteins, leading to neuronal degeneration and brain atrophy. This study proposes a mathematical model for brain atrophy induced by the spreading of misfolded τ-proteins, together with its numerical discretization. The mathematical model entails a Fisher- Kolmogorov equation describing the spreading of the proteins coupled with a linear elasticity equation describing the atrophy process. These equations are coupled via the logistic law governing brain volume reduction. To effectively manage the complexity of the domain the spatial discretization is based on employing the Polygonal Discontinuous Galerkin method on polygonal/polyhedral grids and the θ-method for time integration. This thesis presents the mathematical model and discusses its features as well as the discretization strategies utilized. Additionally, convergence results are presented to validate the model, alongside some simulations conducted on a simplified domain and on a real brain geometry.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Pederzoli_Tesi_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
13.21 MB
Formato
Adobe PDF
|
13.21 MB | Adobe PDF | Visualizza/Apri |
2024_04_Pederzoli_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218345