Bone regeneration presents a critical challenge in addressing critical size bone defects resulting from trauma, infection, tumour removal, or skeletal abnormalities. Tissue engineering offers a promising approach by integrating biological factors, cells, and scaffolds to create an effective environment for optimal bone healing. Among the key components of tissue engineering, scaffolds play a crucial role in providing structural support and guiding tissue growth. Triply Periodic Minimal Surfaces (TPMS)-based scaffolds have emerged as a novel approach due to their mechanical stability and interconnected porosity. This study aims to characterise the morphological and mechanical properties of TPMS scaffolds fabricated in hydroxyapatite (HA) using Vat Photopolymerisation (VPP) technology. Three TPMS architectures (Diamond, Gyroid, and IWP) were considered, and confocal microscopy, compression simulations, homogenisation analyses, and non-destructive ultrasonic tests were employed for characterisation. The utilisation of non-destructive ultrasonic testing underscores its significance in accurately assessing scaffold properties without compromising their integrity, offering valuable insights for optimising scaffold fabrication processes and enhancing their performance in specific clinical applications. Each of the conducted tests was meticulously designed to ensure the effectiveness of each measurement and to generate precise input parameters crucial for subsequent analyses. By doing so, the study provided invaluable data for comparing identical parameters obtained through various methodologies. The standardisation of testing procedures and protocols ensured consistency and reliability in the gathered data. Furthermore, by systematically characterising these scaffolds and comparing results obtained through different methodologies, this study played a crucial role in bridging the gap between experimental and numerical analyses, thereby enhancing the understanding of scaffold performance.
La rigenerazione ossea rappresenta una sfida cruciale per affrontare difetti ossei di dimensioni critiche derivanti da traumi, infezioni, rimozione di tumori o anomalie scheletriche. L'ingegneria tissutale offre un approccio promettente integrando fattori biologici, cellule e scaffold per creare un ambiente efficace per una guarigione ossea ottimale. Tra i componenti chiave dell'ingegneria tissutale, gli scaffold svolgono un ruolo cruciale nel fornire supporto strutturale e guidare la crescita dei tessuti. Gli scaffold basati su Superfici Minime Tripli Periodiche (TPMS) sono emersi come un approccio innovativo grazie alla loro stabilità meccanica e all'interconnessione porosa. Questo studio mira a caratterizzare le proprietà morfologiche e meccaniche di alcuni scaffold TPMS fabbricati in idrossiapatite (HA) con la tecnologia della fotopolimerizzazione in vasca (VPP). Sono state prese in considerazione tre architetture TPMS (Diamante, Giroide e IWP) e per la caratterizzazione sono stati utilizzati microscopia confocale, simulazioni di compressione, analisi di omogeneizzazione e test ultrasonici non distruttivi. L'utilizzo di test non distruttivi ad ultrasuoni risulta fondamentale per la valutazione accurata delle proprietà degli scaffold senza comprometterne l'integrità, offrendo preziose indicazioni per ottimizzare i processi di fabbricazione e migliorarne le prestazioni in applicazioni cliniche specifiche. Tutti i test condotti sono stati progettati meticolosamente per garantire l'efficacia di ogni misurazione e generare parametri di input fondamentali per le analisi successive. In questo modo, lo studio ha fornito una metodologia precisa per confrontare gli stessi parametri, ottenuti però tramite metodologie diverse. La standardizzazione delle procedure e dei protocolli di prova ha garantito la coerenza e l'affidabilità dei dati raccolti. Inoltre, caratterizzando sistematicamente questi scaffold e confrontando i risultati ottenuti con diverse metodologie, questo studio ha svolto un ruolo cruciale nel colmare il divario tra analisi sperimentali e numeriche, migliorando allo stesso tempo la comprensione delle prestazioni degli scaffold TPMS.
Mechanical properties of 3D printed hydroxyapatite scaffolds: bridging the gap between numerical and experimental analyses
Pascucci, Leonardo
2022/2023
Abstract
Bone regeneration presents a critical challenge in addressing critical size bone defects resulting from trauma, infection, tumour removal, or skeletal abnormalities. Tissue engineering offers a promising approach by integrating biological factors, cells, and scaffolds to create an effective environment for optimal bone healing. Among the key components of tissue engineering, scaffolds play a crucial role in providing structural support and guiding tissue growth. Triply Periodic Minimal Surfaces (TPMS)-based scaffolds have emerged as a novel approach due to their mechanical stability and interconnected porosity. This study aims to characterise the morphological and mechanical properties of TPMS scaffolds fabricated in hydroxyapatite (HA) using Vat Photopolymerisation (VPP) technology. Three TPMS architectures (Diamond, Gyroid, and IWP) were considered, and confocal microscopy, compression simulations, homogenisation analyses, and non-destructive ultrasonic tests were employed for characterisation. The utilisation of non-destructive ultrasonic testing underscores its significance in accurately assessing scaffold properties without compromising their integrity, offering valuable insights for optimising scaffold fabrication processes and enhancing their performance in specific clinical applications. Each of the conducted tests was meticulously designed to ensure the effectiveness of each measurement and to generate precise input parameters crucial for subsequent analyses. By doing so, the study provided invaluable data for comparing identical parameters obtained through various methodologies. The standardisation of testing procedures and protocols ensured consistency and reliability in the gathered data. Furthermore, by systematically characterising these scaffolds and comparing results obtained through different methodologies, this study played a crucial role in bridging the gap between experimental and numerical analyses, thereby enhancing the understanding of scaffold performance.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Pascucci_Tesi_01.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
42.51 MB
Formato
Adobe PDF
|
42.51 MB | Adobe PDF | Visualizza/Apri |
2024_04_Pascucci_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Testo Executive Summary
Dimensione
5.38 MB
Formato
Adobe PDF
|
5.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218403