Satisfying mankind’s needs and concurrently taking care of our planet require an energetic transition aiming at alternative horizons, while enhancing the most promising ones. Proton Exchange Membrane Fuel Cells (PEMFCs), as well as an adequate hydrogen distribution infrastructure, might represent the missing link between a fossil-based society and an environmentally friendly future. In recent years, acid-functionalized graphene oxide (GO) was proven to be a reliable method to improve the proton conductivity in composite arrangements for proton-conducting membranes. In the first half of this thesis work, preceding studies on Polybenzimidazole/Sulfonated GO (PBI/SGO) composites, characterized by unexplored mass ratios between 3:1 and 1:3, are deepened by XPS deconvolution with functional groups assignment and EIS modeling in equivalent electric circuits. The former confirms the remarkable interplay between PBI and SGO through the recognition of chemical bonds and functional groups of both constituents. The latter deals with the extrapolation of information about in-plane (σip) and through-plane (σtp) proton conductivities, as well as mass-transfer phenomena. At 120 °C, PBI/SGO 1:2 displayed a σip of 0.113 S cm–1, while PBI/SGO 1:3 reached a σtp of 0.025 S cm–1, both superior to the ones of commercial Nafion®117 at 60-80 °C. In the second half, self-assembled Phosphonated GO (PGO) membranes are formulated with phosphoric acid (PA)-to-GO molar ratios of 1:1 (PGO-a), 10:1 (PGO-b), and 20:1 (PGO-c). Morphological characterization by OM shows a smoothening effect when increasing PA content, without macroscopical defects. ATR-FTIR corroborates the success of the functionalization process through the identification of the phosphonic acid groups vibrational modes. TGA assesses the thermal stability and lower mass losses than pure GO within the “conductivity gap” temperature range (80-120 °C). Ion Exchange Capacity (IEC) evaluation demonstrates an increment of 176-to-245% compared to pure GO, with the best performance of 2.62 meq g–1 provided by PGO-c.
Soddisfare i bisogni dell'umanità e contemporaneamente prendersi cura del nostro pianeta richiede una transizione energetica che mira a orizzonti alternativi, migliorando quelli più promettenti. Le celle a combustibile a membrana a scambio protonico (PEMFCs), così come un'adeguata infrastruttura di distribuzione dell'idrogeno, potrebbero rappresentare l'anello mancante tra una società basata sui combustibili fossili e un futuro rispettoso dell'ambiente. Negli ultimi anni, l’ossido di grafene (GO) funzionalizzato con acidi ha dimostrato di essere un metodo affidabile per migliorare la conducibilità protonica in membrane composite. Nella prima metà di questo lavoro di tesi, precedenti studi sui compositi Polibenzimidazolo/ GO Solfonato (PBI/SGO), caratterizzati da rapporti di massa inesplorati tra 3:1 e 1:3, vengono approfonditi attraverso la deconvoluzione XPS con assegnazione dei gruppi funzionali e modellazione EIS in circuiti elettrici equivalenti. La prima conferma la notevole interazione tra PBI e SGO attraverso il riconoscimento di legami chimici e gruppi funzionali di entrambi i costituenti. Il secondo si occupa dell'estrapolazione di informazioni sulle conducibilità protoniche in-plane (σip) e through-plane (σtp) e dei fenomeni di trasferimento di massa. A 120 °C, PBI/ SGO 1: 2 ha mostrato una σip di 0.113 S cm-1, mentre PBI/ SGO 1:3 ha raggiunto una σtp di 0.025 S cm-1, entrambi superiori a quelli di Nafion®117 a 60-80 °C. Nella seconda metà, membrane auto-assemblate di GO fosfonato (PGO) sono state formulate con rapporti molari acido fosforico (PA)-GO pari a 1:1 (PGO-a), 10:1 (PGO-b) e 20:1 (PGO-c). La caratterizzazione morfologica mediante OM mostra un effetto levigante quando si aumenta il contenuto di PA, senza difetti macroscopici. ATR-FTIR corrobora il successo del processo di funzionalizzazione attraverso l'identificazione delle vibrazioni dei gruppi funzionali fosfonici. La TGA verifica la stabilità termica e perdite di massa più basse rispetto al GO puro all’interno del range di temperatura "conductivity gap" (80-120 °C). La valutazione della capacità di scambio ionico (IEC) dimostra un incremento del 176-245% rispetto al GO puro, con la migliore prestazione di 2.62 meq g-1 fornita dal PGO-c.
Novel insights on proton-conducting PBI/SGO composite membranes and development of Phosphonated GO
Colotti, Rubens
2022/2023
Abstract
Satisfying mankind’s needs and concurrently taking care of our planet require an energetic transition aiming at alternative horizons, while enhancing the most promising ones. Proton Exchange Membrane Fuel Cells (PEMFCs), as well as an adequate hydrogen distribution infrastructure, might represent the missing link between a fossil-based society and an environmentally friendly future. In recent years, acid-functionalized graphene oxide (GO) was proven to be a reliable method to improve the proton conductivity in composite arrangements for proton-conducting membranes. In the first half of this thesis work, preceding studies on Polybenzimidazole/Sulfonated GO (PBI/SGO) composites, characterized by unexplored mass ratios between 3:1 and 1:3, are deepened by XPS deconvolution with functional groups assignment and EIS modeling in equivalent electric circuits. The former confirms the remarkable interplay between PBI and SGO through the recognition of chemical bonds and functional groups of both constituents. The latter deals with the extrapolation of information about in-plane (σip) and through-plane (σtp) proton conductivities, as well as mass-transfer phenomena. At 120 °C, PBI/SGO 1:2 displayed a σip of 0.113 S cm–1, while PBI/SGO 1:3 reached a σtp of 0.025 S cm–1, both superior to the ones of commercial Nafion®117 at 60-80 °C. In the second half, self-assembled Phosphonated GO (PGO) membranes are formulated with phosphoric acid (PA)-to-GO molar ratios of 1:1 (PGO-a), 10:1 (PGO-b), and 20:1 (PGO-c). Morphological characterization by OM shows a smoothening effect when increasing PA content, without macroscopical defects. ATR-FTIR corroborates the success of the functionalization process through the identification of the phosphonic acid groups vibrational modes. TGA assesses the thermal stability and lower mass losses than pure GO within the “conductivity gap” temperature range (80-120 °C). Ion Exchange Capacity (IEC) evaluation demonstrates an increment of 176-to-245% compared to pure GO, with the best performance of 2.62 meq g–1 provided by PGO-c.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Colotti_Thesis_Article_01.pdf
solo utenti autorizzati a partire dal 19/03/2027
Descrizione: Tesi formato articolo
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF | Visualizza/Apri |
2024_04_Colotti_Executive Summary_02.pdf
solo utenti autorizzati a partire dal 19/03/2027
Descrizione: Executive Summary della Tesi
Dimensione
915.01 kB
Formato
Adobe PDF
|
915.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218463