During the last decades, the use of composite materials has been widely exploited in different sectors such as automotive, aeronautic, energetic and medical. Given their continuously increasing demand and the arising of issues related to their disposal, the market of composite materials has developed particular interest in the research of innovative materials capable of being recovered at the end of their lifecycle. In this regard, the following experimental work investigated the potential effects resulting from accelerated aging conditions on a novel thermoplastic acrylic-based resin (Elium®) reinforced with basalt fibres, which can find interesting applications in the marine sector as a valid substitute for glass fibre reinforced thermoset composites. Basalt fibres are recognized for their high mechanical properties and their ability to be more easily reclaimed with respect to glass ones, while thermoplastic resins offer more accessible recycling routes compared to thermoset ones. With the intention of detecting modifications in the material's mechanical behaviour following long-term environmental exposure, paying particular attention towards the effects induced by UV radiation and water absorption, two accelerated aging protocols were adopted. The first one, UV conditioning, was aimed to simulate a prolonged exposure to natural solar light and was conducted by means of a dedicated chamber. The second procedure, instead, involved a series of immersion tests in water, thus focusing on the effects resulting from the permeation of water molecules inside the material. The composite samples, obtained by means of Vacuum Assisted Resin Infusion (VARI) technique, were manufactured with a [+45° warp, -45° weft] lay-up in order to emphasize the role of the matrix and test the matrix-fibre interfacial adhesion. The mechanical characterization of the material, conducted through Four Point Bending and Short Beam Shear tests, found an improvement in the mechanical properties of the UV conditioned samples that could be justified by a post-polymerization reaction occurring in Elium® resin during the aging. On the other hand, samples subjected to immersion in water exhibited a reduction in mechanical properties which could have been induced by matrix swelling and plasticization phenomena and fibre-matrix interfacial debonding.
Durante gli ultimi decenni, l'uso dei materiali compositi è stato ampiamente sfruttato in diversi settori come l'automotive, l'aeronautica, l'energetica e la medicina. Data la loro domanda in continua crescita e l'insorgere di problematiche legate al loro smaltimento, il mercato dei materiali compositi ha sviluppato un particolare interesse nella ricerca di materiali innovativi in grado di essere recuperati al termine del loro ciclo di vita. A tal proposito, il presente lavoro sperimentale ha analizzato i possibili effetti derivanti da condizioni di invecchiamento accelerato su una nuova resina termoplastica a base acrilica (Elium®) rinforzata con fibre di basalto, la quale può trovare interessanti applicazioni nel settore marino come valido sostituto dei compositi a matrice termoindurente rinforzati con fibre di vetro. Le fibre di basalto sono riconosciute per le loro elevate proprietà meccaniche e la loro capacità di essere recuperate più facilmente rispetto a quelle di vetro, mentre le resine termoplastiche offrono metodi di riciclo più accessibili rispetto a quelle termoindurenti. Con l'intento di rilevare alterazioni nel comportamento meccanico del materiale a seguito di un'esposizione ambientale a lungo termine, prestando particolare attenzione agli effetti indotti dalla radiazione UV e dall'assorbimento di acqua, sono stati adottati due protocolli di invecchiamento accelerato. Il primo, condizionamento UV, è finalizzato a simulare una prolungata esposizione alla naturale luce solare ed è stato condotto mediante una camera dedicata. La seconda procedura, invece, ha coinvolto una serie di test di immersione in acqua, concentrandosi quindi sugli effetti derivanti dalla permeazione delle molecole d'acqua all'interno del materiale. I campioni di composito, ottenuti mediante la tecnica di infusione assistita dal vuoto (VARI), sono stati prodotti con un’orientazione [+45° trama, -45° ordito] al fine di evidenziare il ruolo della matrice e testare l'adesione all’interfaccia fibra-matrice. La caratterizzazione meccanica del materiale, condotta attraverso prove di flessione a quattro punti e prove di taglio a trave corta, ha riscontrato un miglioramento delle proprietà meccaniche nei campioni sottoposti a condizionamento UV, il quale potrebbe essere giustificato da una reazione di post-polimerizzazione che si verifica nella resina Elium® durante l'invecchiamento. D'altra parte, i campioni sottoposti ad immersione in acqua hanno mostrato una riduzione delle proprietà meccaniche che potrebbe essere stata indotta da fenomeni di rigonfiamento e di plasticizzazione della matrice e di distacco interfacciale tra fibra e matrice.
Environmental aging of basalt fibre and elium matrix composites for marine applications
Borelli, Lucia
2022/2023
Abstract
During the last decades, the use of composite materials has been widely exploited in different sectors such as automotive, aeronautic, energetic and medical. Given their continuously increasing demand and the arising of issues related to their disposal, the market of composite materials has developed particular interest in the research of innovative materials capable of being recovered at the end of their lifecycle. In this regard, the following experimental work investigated the potential effects resulting from accelerated aging conditions on a novel thermoplastic acrylic-based resin (Elium®) reinforced with basalt fibres, which can find interesting applications in the marine sector as a valid substitute for glass fibre reinforced thermoset composites. Basalt fibres are recognized for their high mechanical properties and their ability to be more easily reclaimed with respect to glass ones, while thermoplastic resins offer more accessible recycling routes compared to thermoset ones. With the intention of detecting modifications in the material's mechanical behaviour following long-term environmental exposure, paying particular attention towards the effects induced by UV radiation and water absorption, two accelerated aging protocols were adopted. The first one, UV conditioning, was aimed to simulate a prolonged exposure to natural solar light and was conducted by means of a dedicated chamber. The second procedure, instead, involved a series of immersion tests in water, thus focusing on the effects resulting from the permeation of water molecules inside the material. The composite samples, obtained by means of Vacuum Assisted Resin Infusion (VARI) technique, were manufactured with a [+45° warp, -45° weft] lay-up in order to emphasize the role of the matrix and test the matrix-fibre interfacial adhesion. The mechanical characterization of the material, conducted through Four Point Bending and Short Beam Shear tests, found an improvement in the mechanical properties of the UV conditioned samples that could be justified by a post-polymerization reaction occurring in Elium® resin during the aging. On the other hand, samples subjected to immersion in water exhibited a reduction in mechanical properties which could have been induced by matrix swelling and plasticization phenomena and fibre-matrix interfacial debonding.File | Dimensione | Formato | |
---|---|---|---|
2024_4_Borelli_Tesi_01.pdf
Open Access dal 13/03/2025
Descrizione: tesi
Dimensione
12.27 MB
Formato
Adobe PDF
|
12.27 MB | Adobe PDF | Visualizza/Apri |
2024_4_Borelli_Executive_Summary_02.pdf
Open Access dal 13/03/2025
Descrizione: executive summary
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218599