The scientific community is united in attributing the recent decades climate upheaval to anthropogenic greenhouse gas emissions into the atmosphere. The primary among these gases, carbon dioxide, largely originates from the energy sector. The principal instrument to combat and prevent this phenomenon is the energy transition, meaning the shift from an energy mix centered on fossil fuels to one with low or zero carbon emissions, based on renewable sources. Wind power is deemed a crucial technology to facilitate this transition,according to literature. However, it faces challenges in finding onshore locations and sometimes encounters public discontent due to its environmental and visual impact. An alternative to onshore wind energy is offshore wind energy, which differs from its onshore counterpart by offering a greater availability of wind resources, while also providing more options for site installation and promoting social acceptance. Indeed, wind turbines installed offshore, thanks to their significant distance from residential areas, should minimize acoustic and visual impacts on the well-being of citizens, thus ensuring less interference with the daily life of individuals. Furthermore, the strategic placement of wind turbines in open sea proves particularly advantageous as most of the world’s population resides near coastal areas. This proximity makes offshore wind technology especially promising for meeting the energy demand of coastal metropolises, while avoiding costly investments in high-voltage electrical transmission infrastructure on land. Most current offshore installations consist of wind turbines with a base fixed to the seabed, but an evolution is gaining ground: floating wind turbines. These enhance the three aforementioned advantages, as they can be installed far from the coast, offering many more site installation options and minimizing acoustic and visual impact. This new opportunity, however, must be supported by research studies that develop design models and software, and studies aiming to understand the properties and performance of this type of wind turbines. A major challenge associated with these new turbines is the introduction of hydrodynamics and thus hydro-aero-elastic coupling, which requires careful analysis. Therefore, this thesis project, using the framework developed by POLI-Wind Wind Energy Lab in the Department of Aerospace Science and Technology, aims to better understand the impact of design variables of a 5MW wind turbine with a spartype base on its performance. It also seeks to comprehend how potential environmental or numerical inputs might interfere with the turbine’s performance. The goal of this thesis is to take a first step towards achieving an optimized design that minimizes costs while meeting all necessary requirements. Indeed, in addition to understanding the aforementioned aspects, this study aimed to arrive at a concept design that represents the right compromise between computational costs and accuracy.
La comunità scientifica è compatta nell’attribuire alle emissioni antropiche di gas a effetto serra in atmosfera lo stravolgimento del clima degli ultimi decenni. Il principale fra questi gas, l’anidride carbonica, proviene in gran parte dal settore energetico. Lo strumento principale per contrastare e prevenire tale fenomeno è la transizione energetica, cioè il passaggio da un mix energetico centrato sui combustibili fossili a uno a basse o a zero emissioni di carbonio, basato sulle fonti rinnovabili. Per favorire tale transizione, una tecnologia fondamentale secondo la letteratura è rappresentata dall’eolico, che tuttavia si scontra con la difficoltà di trovare sedi onshore e a volte con il malcontento dei cittadini a causa dell’impatto ambientale e visivo. Un’alternativa all’energia eolica onshore è l’energia eolica offshore, che si differenzia da quella onshore per una maggiore disponibilità di risorse eoliche, offrendo al contempo più opzioni di installazione in sito e promuovendo l’accettazione sociale. Infatti le turbine eoliche installate in mare aperto, grazie alla loro distanza significativa dalle residenze civili, dovrebbero ridurre al minimo l’impatto acustico e visivo sul benessere dei cittadini, garantendo così una minore interferenza con la vita quotidiana degli individui. Inoltre la collocazione strategica delle turbine eoliche in mare aperto si rivela particolarmente vantaggiosa in quanto la maggior parte della popolazione mondiale risiede in prossimità delle aree costiere. Questa vicinanza rende la tecnologia eolica offshore particolarmente promettente per soddisfare la domanda energetica delle metropoli litoranee, evitando al contempo costosi investimenti nelle infrastrutture di trasmissione elettrica ad alta tensione sul territorio. La gran parte delle installazioni offshore attualmente è costituita da generatori eolici con una base fissata al fondale marino, ma una sua evoluzione sta prendendo sempre più piede: le turbine eoliche galleggianti. Queste amplificano i tre vantaggi sopra menzionati, infatti, avendo la possibilità di poter essere installate lontano dalla costa, hanno a disposizione molte più sedi di installazione riducendo al minimo l’impatto acustico e visivo. Questa nuova opportunità deve però essere sostenuta da studi di ricerca che sviluppino modelli e software di progettazione e da studi che mirino a comprendere proprietà e prestazioni di questa tipologia di turbine eoliche. Una grande sfida associata a queste nuove turbine è l’introduzione dell’idrodinamica e quindi all’accoppiamento idro-aero-elastico, che richiede un’attenta analisi. Questo progetto di tesi ha quindi l’intenzione, mediante il framework di lavoro realizzato dal POLI-Wind Wind Energy Lab del Dipartimento di Scienze e Tecnologie Aerospaziali, di comprendere meglio l’impatto delle variabili di progetto di una turbina eolica 5MW con base di tipo spar sulle prestazioni della stessa. Nonché di comprendere come eventuali input di natura ambientale o numerica possano interferire con le prestazioni della turbina eolica. L’obiettivo di questa tesi è quindi quello di compiere un primo passo verso la realizzazione di un design ottimizzato che permetta di minimizzare i costi soddisfacendo tutti i requisiti necessari.Questo studio infatti oltre a comprendere gli aspetti sopra elencati ha avuto l’obiettivo di arrivare ad un concept design che fosse un giusto compromesso fra costi computazionali ed accuratezza.
Sensitivity analyses on the design of spar-type floating substructures for offshore wind turbines
De Vincenzi, Antonio
2023/2024
Abstract
The scientific community is united in attributing the recent decades climate upheaval to anthropogenic greenhouse gas emissions into the atmosphere. The primary among these gases, carbon dioxide, largely originates from the energy sector. The principal instrument to combat and prevent this phenomenon is the energy transition, meaning the shift from an energy mix centered on fossil fuels to one with low or zero carbon emissions, based on renewable sources. Wind power is deemed a crucial technology to facilitate this transition,according to literature. However, it faces challenges in finding onshore locations and sometimes encounters public discontent due to its environmental and visual impact. An alternative to onshore wind energy is offshore wind energy, which differs from its onshore counterpart by offering a greater availability of wind resources, while also providing more options for site installation and promoting social acceptance. Indeed, wind turbines installed offshore, thanks to their significant distance from residential areas, should minimize acoustic and visual impacts on the well-being of citizens, thus ensuring less interference with the daily life of individuals. Furthermore, the strategic placement of wind turbines in open sea proves particularly advantageous as most of the world’s population resides near coastal areas. This proximity makes offshore wind technology especially promising for meeting the energy demand of coastal metropolises, while avoiding costly investments in high-voltage electrical transmission infrastructure on land. Most current offshore installations consist of wind turbines with a base fixed to the seabed, but an evolution is gaining ground: floating wind turbines. These enhance the three aforementioned advantages, as they can be installed far from the coast, offering many more site installation options and minimizing acoustic and visual impact. This new opportunity, however, must be supported by research studies that develop design models and software, and studies aiming to understand the properties and performance of this type of wind turbines. A major challenge associated with these new turbines is the introduction of hydrodynamics and thus hydro-aero-elastic coupling, which requires careful analysis. Therefore, this thesis project, using the framework developed by POLI-Wind Wind Energy Lab in the Department of Aerospace Science and Technology, aims to better understand the impact of design variables of a 5MW wind turbine with a spartype base on its performance. It also seeks to comprehend how potential environmental or numerical inputs might interfere with the turbine’s performance. The goal of this thesis is to take a first step towards achieving an optimized design that minimizes costs while meeting all necessary requirements. Indeed, in addition to understanding the aforementioned aspects, this study aimed to arrive at a concept design that represents the right compromise between computational costs and accuracy.File | Dimensione | Formato | |
---|---|---|---|
2024_04_DeVincenzi.pdf
solo utenti autorizzati dal 19/03/2025
Descrizione: Testo della tesi
Dimensione
17.52 MB
Formato
Adobe PDF
|
17.52 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218600