With the growing concern for climate change, the call to address a gradual decarbonization of the energy system, must be at the forefront of any development plan. Energy System Optimization Models (ESOMs) are one of the most effective tool for assisting policy-makers, however, an optimization based only on the minimization of the costs (least-cost solution), proved that it might suffer of an uneven distribution of the resources, low capacity factors, high land usage and low social acceptance. In order to make the model more flexible, this study explores a wide range of alternative solutions, in order to understand which are the technologies that are necessary to be included in the development plan. Starting from a multi-objective optimization, which leads in finding a set of optimal solutions that constitute the so called Pareto frontier, is then proposed a novel methodology, aiming at finding near to optimal solutions based on a cost increase of 5%, 10% and 20%. The results reveal that, for the case study of Italy, photovoltaic (PV) technologies coupled with batteries, together with on and off shore wind, biofuels and waste, pumped hydro storage and hydro power plants, are must have technologies, meaning that they cannot be substituted and are essential for the future energy mix by 2050. Additionally, also the cutting-edge carbon capture and storage (CCS) technologies, could be considered a possible future must-have, being present in all the alternative options but the least-cost. Additionally, all the scenarios are compared through two key indicators: the system's load factor and the carbon cost (defined as the ratio between the cost increase and the emission decrease). Although all the near to optimal solutions present a decrease in the emissions and land usage, coupled with higher load factors, a 5% cost increase is already enough for gaining significative environmental benefits (31% of emission decrease) with reasonable carbon costs. Higher cost relaxations are thus feasible and attractive, but they are characterized by higher carbon costs due to the deployment of larger and more expensive technologies which have low specific emissions but are costly to implement.
Con la crescente preoccupazione per il cambiamento climatico, l’obiettivo di attuare una graduale decarbonizzazione del sistema energetico sta alla base di ogni piano di sviluppo. Gli attuali modelli energetici, sono uno degli strumenti più efficaci per assistere politici e stakeholder, anche se un’ottimizzazione basata solo sui costi (soluzione least-cost), ha dimostrato di poter presentare diverse problematiche quali una distribuzione disomogenea delle risorse, bassi fattori di carico ed un elevato utilizzo del suolo. Al fine di rendere il modello più flessibile, questo studio è volto a generare una vasta gamma di soluzioni alternative, con lo scopo di individuare quali sono le tecnologie essenziali alla transizione energetica. A partire da un’ottimizzazione multi-obiettivo, che porta ad individuare un insieme di soluzioni ottimali che costituiscono la cosiddetta frontiera di Pareto, sono state successivamente trovate delle soluzioni di semi ottimo, caratterizzate da un aumento dei costi del 5%, 10% e 20% rispetto alla soluzione least-cost. I risultati rivelano che, per il caso studio dell’Italia, il fotovoltaico (FV) abbinato alle batterie, insieme alle centrali eoliche onshore e offshore, impianti a biomassa e idroelettrici, e accumulo idroelettrico, sono tecnologie indispensabili, ovvero che non possono essere sostituite e sono essenziali per il futuro mix energetico al 2050. Inoltre, anche i nuovi sistemi all’avanguardia di cattura e stoccaggio del carbonio (CCS) possono essere considerati possibili impianti necessari per il futuro, essendo presenti in tutte le alternative tranne che nella soluzione least-cost. Gli scenari sviluppati sono stati successivamente analizzati attraverso due indicatori chiave: il fattore di carico del sistema e il carbon cost (stimato come il rapporto tra l’incremento dei costi e la diminuzione delle emissioni). Il confronto dimostra che, sebbene tutte le soluzioni vicine all’ottimo presentino una diminuzione delle emissioni e dell’uso del suolo, insieme a fattori di carico più elevati, un aumento del costo del 5% è già sufficiente per ottenere significativi benefici ambientali (diminuzione delle emissioni del 31%) con carbon cost ragionevoli. Un incremento dei costi più elevato,invece, porta a soluzioni fattibili e allettanti, ma con un aumento del carbon cost a causa dell’impiego di tecnologie caratterizzate da basse emissioni specifiche, ma onerose da implementare.
Investigating the regional contributions to the Italian decarbonization: an energy modelling multi-regional approach
Lo Giudice, Camilla
2023/2024
Abstract
With the growing concern for climate change, the call to address a gradual decarbonization of the energy system, must be at the forefront of any development plan. Energy System Optimization Models (ESOMs) are one of the most effective tool for assisting policy-makers, however, an optimization based only on the minimization of the costs (least-cost solution), proved that it might suffer of an uneven distribution of the resources, low capacity factors, high land usage and low social acceptance. In order to make the model more flexible, this study explores a wide range of alternative solutions, in order to understand which are the technologies that are necessary to be included in the development plan. Starting from a multi-objective optimization, which leads in finding a set of optimal solutions that constitute the so called Pareto frontier, is then proposed a novel methodology, aiming at finding near to optimal solutions based on a cost increase of 5%, 10% and 20%. The results reveal that, for the case study of Italy, photovoltaic (PV) technologies coupled with batteries, together with on and off shore wind, biofuels and waste, pumped hydro storage and hydro power plants, are must have technologies, meaning that they cannot be substituted and are essential for the future energy mix by 2050. Additionally, also the cutting-edge carbon capture and storage (CCS) technologies, could be considered a possible future must-have, being present in all the alternative options but the least-cost. Additionally, all the scenarios are compared through two key indicators: the system's load factor and the carbon cost (defined as the ratio between the cost increase and the emission decrease). Although all the near to optimal solutions present a decrease in the emissions and land usage, coupled with higher load factors, a 5% cost increase is already enough for gaining significative environmental benefits (31% of emission decrease) with reasonable carbon costs. Higher cost relaxations are thus feasible and attractive, but they are characterized by higher carbon costs due to the deployment of larger and more expensive technologies which have low specific emissions but are costly to implement.File | Dimensione | Formato | |
---|---|---|---|
Italian_decarbonization_Camilla_lo_giudice.pdf
accessibile in internet per tutti
Dimensione
3.64 MB
Formato
Adobe PDF
|
3.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218662