Magnetoelectric nanoparticles (MENPs) can generate locally high electric fields when activated with low-intensity magnetic fields. However, when administrated alone, MENPs can be placed randomly and tend to form clusters. The resulting, induced electric fields decay very rapidly with distance, compromising an effective tissue stimulation. In this context, the following study introduces a novel approach for tissue stimulation employing magnetoelectric nanoparticles embedded in a biocompatible 3D polymeric matrix (ME-Patch). Through an in silico approach, the electrical performance of the ME-Patch is optimized, starting with the implementation of a nanoscale modeling in which the materials electrical behaviorsare thoroughly investigated, to reach the functional patch evaluation with a realistic peripheral nerve model. Our results offer insights for the fabrication of soft, biocompatible magnetoelectric devices capable of storing and transferring the effects of MENPs to trigger neuronal action potentials. By exploiting the ability of these novel nano-sources to wirelessly generate electricity in response to low-intensity magnetic fields, our approach holds promises for non-invasive nerve stimulation, overcoming several limitations associated with conventional stimulators and presents exciting opportunities for the advancement of neural interfacing technologies.

Le nanoparticelle magnetoelettriche (MENPs) possono generare campi elettrici locali elevati se attivate con campi magnetici di bassa intensità. Tuttavia, quando vengono somministrate singolarmente, le MENP possono essere posizionate in modo casuale e tendono a formare dei cluster. I campi elettrici indotti che ne derivano decadono molto rapidamente all'aumentare della distanza, compromettendo un'efficace stimolazione dei tessuti. In questo contesto, il seguente studio introduce un nuovo approccio per la stimolazione dei tessuti che impiega nanoparticelle magnetoelettriche incorporate in una matrice polimerica 3D biocompatibile (ME-Patch). Attraverso un approccio in silico, le prestazioni elettriche del ME-Patch vengono ottimizzate, a partire dall'implementazione di una modellazione su scala nanometrica in cui vengono accuratamente studiati i comportamenti elettrici dei materiali, fino a raggiungere la valutazione funzionale del patch con un modello realistico di nervo periferico. I nostri risultati offrono spunti per la fabbricazione di dispositivi magnetoelettrici soft e biocompatibili in grado di immagazzinare e trasferire gli effetti delle MENP per innescare potenziali d'azione neuronali. Sfruttando la capacità di tali nanosorgenti di generare elettricità in modalità wireless come risposta a campi magnetici a bassa intensità, il nostro approccio promette una stimolazione nervosa non invasiva, superando le numerose limitazioni associate agli stimolatori convenzionali e presentando interessanti opportunità per l'avanzamento delle tecnologie di interfacciamento neurale.

Innovative techniques for neural stimulation using magneto-electric nanoparticles

TOMMASINI, ANNA
2023/2024

Abstract

Magnetoelectric nanoparticles (MENPs) can generate locally high electric fields when activated with low-intensity magnetic fields. However, when administrated alone, MENPs can be placed randomly and tend to form clusters. The resulting, induced electric fields decay very rapidly with distance, compromising an effective tissue stimulation. In this context, the following study introduces a novel approach for tissue stimulation employing magnetoelectric nanoparticles embedded in a biocompatible 3D polymeric matrix (ME-Patch). Through an in silico approach, the electrical performance of the ME-Patch is optimized, starting with the implementation of a nanoscale modeling in which the materials electrical behaviorsare thoroughly investigated, to reach the functional patch evaluation with a realistic peripheral nerve model. Our results offer insights for the fabrication of soft, biocompatible magnetoelectric devices capable of storing and transferring the effects of MENPs to trigger neuronal action potentials. By exploiting the ability of these novel nano-sources to wirelessly generate electricity in response to low-intensity magnetic fields, our approach holds promises for non-invasive nerve stimulation, overcoming several limitations associated with conventional stimulators and presents exciting opportunities for the advancement of neural interfacing technologies.
MARELLA, ALESSANDRA
SUARATO, GIULIA
ING - Scuola di Ingegneria Industriale e dell'Informazione
9-apr-2024
2023/2024
Le nanoparticelle magnetoelettriche (MENPs) possono generare campi elettrici locali elevati se attivate con campi magnetici di bassa intensità. Tuttavia, quando vengono somministrate singolarmente, le MENP possono essere posizionate in modo casuale e tendono a formare dei cluster. I campi elettrici indotti che ne derivano decadono molto rapidamente all'aumentare della distanza, compromettendo un'efficace stimolazione dei tessuti. In questo contesto, il seguente studio introduce un nuovo approccio per la stimolazione dei tessuti che impiega nanoparticelle magnetoelettriche incorporate in una matrice polimerica 3D biocompatibile (ME-Patch). Attraverso un approccio in silico, le prestazioni elettriche del ME-Patch vengono ottimizzate, a partire dall'implementazione di una modellazione su scala nanometrica in cui vengono accuratamente studiati i comportamenti elettrici dei materiali, fino a raggiungere la valutazione funzionale del patch con un modello realistico di nervo periferico. I nostri risultati offrono spunti per la fabbricazione di dispositivi magnetoelettrici soft e biocompatibili in grado di immagazzinare e trasferire gli effetti delle MENP per innescare potenziali d'azione neuronali. Sfruttando la capacità di tali nanosorgenti di generare elettricità in modalità wireless come risposta a campi magnetici a bassa intensità, il nostro approccio promette una stimolazione nervosa non invasiva, superando le numerose limitazioni associate agli stimolatori convenzionali e presentando interessanti opportunità per l'avanzamento delle tecnologie di interfacciamento neurale.
File allegati
File Dimensione Formato  
2024_04_Tommasini_Executive Summary.pdf

accessibile in internet per tutti

Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
2024_04_Tommasini_Tesi.pdf

accessibile in internet per tutti

Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/218716