The increasing reliance on space activities in civilian, commercial, and military domains exposes a vulnerability: modern warfare recognizes space as a strategic battlefield, given the crucial role of information from space in decision-making. This potential need to intercept, inspect, destroy, or neutralize satellites prompts consideration of defensive evasive actions. Thus, the aim of this thesis is to present a comprehensive academic study with generic applicability to spacecraft defense. Specifically, several evasive strategies are studied in the field of angles-only relative navigation, investigating the orbital Pursuit-Evasion Game theory and the maximization of the pursuer’s estimation error by applying the Cramer-Rao inequality, at ideal and realistic levels. The orbital Pursuit-Evasion Game is typically formulated as a complete-information optimal control problem, in which both players’ payoff functions are common knowledge. However, a realistic scenario is characterized by lack of the opponent payoff information, which limits the ability to play optimally. To tackle this challenge, an unscented Kalman filter is implemented to make the evader accurately estimate pursuer’s private information, and Non-Zero Sum Game theory is exploited to obtain the optimal evasion strategy. On the other hand, the alternative proposal relies on the Observability Degree, a parameter linked to the pursuer’s observability. The latter can be described by introducing the Fisher matrix, that collects the information about unobservable states contained in the measured parameters. The optimal solution that minimizes the aforementioned index makes pursuer’s estimations deviate from reality, impairing its tracking capabilities and making it impossible for the hostile chaser to accurately approach the spacecraft. All the proposed strategies are theoretically described and the same scenario is simulated to compare the results, which show effective evasive actions for both impulsive and continuous low thrust applications.
La crescente dipendenza dalle attività spaziali nei settori civile, commerciale e militare comporta una vulnerabilità: le moderne potenze militari riconoscono lo spazio come un campo di battaglia strategico, vista l’importanza cruciale di dati ed informazioni sensibili gestite dallo spazio. Questa potenziale necessità di intercettare, ispezionare, distruggere o neutralizzare satelliti suggerisce, quindi, il dover considerare attività difensive volte all’evasione. Pertanto, l’obiettivo di questa tesi è presentare un esaustivo studio accademico per un’applicabilità generale in difesa di veicoli spaziali. In particolare, vengono studiate diverse strategie di evasione, nel campo di sole misure angolari, investigando la teoria del Pursuit-Evasion Game orbitale e la massimizzazione dell’errore di stima dell’inseguitore applicando la disuguaglianza di Cramer-Rao, a livello ideale e realistico. Il Pursuit-Evasion Game orbitale è tipicamente formulato come un problema di controllo ottimo a informazione completa, in cui le funzioni di costo di entrambi i giocatori sono di conoscenza comune. Tuttavia, uno scenario realistico è caratterizzato dalla mancanza di informazioni dell’avversario, il che limita la capacità di giocare in modo ottimale. A fronte di ciò, un filtro di Kalman di tipo Unscented è implementato per consentire al satellite evasore di stimare accuratamente le informazioni private dell’inseguitore, e la teoria del Non-Zero Sum Game è sfruttata per ottenere la strategia di evasione ottimale. D’altra parte, l’alternativa proposta si basa sul Grado di Osservabilità, un parametro legato all’osservabilità dell’inseguitore. Quest’ultima può essere descritta introducendo la matrice di Fisher, la quale raccoglie le informazioni sugli stati non osservabili contenute nei parametri misurati. La soluzione che minimizza il suddetto indice fa deviare le stime dell’inseguitore dalla realtà, compromettendo le sue capacità di tracciamento del target. Tutte le strategie proposte sono descritte a livello teorico e lo stesso scenario è simulato per confrontare i risultati, i quali ne mostrano l’efficacia sia per applicazioni a spinta impulsiva che continua.
Defense tactics in space: an extensive study on spacecraft evasive strategies
Capitanio, Matteo
2023/2024
Abstract
The increasing reliance on space activities in civilian, commercial, and military domains exposes a vulnerability: modern warfare recognizes space as a strategic battlefield, given the crucial role of information from space in decision-making. This potential need to intercept, inspect, destroy, or neutralize satellites prompts consideration of defensive evasive actions. Thus, the aim of this thesis is to present a comprehensive academic study with generic applicability to spacecraft defense. Specifically, several evasive strategies are studied in the field of angles-only relative navigation, investigating the orbital Pursuit-Evasion Game theory and the maximization of the pursuer’s estimation error by applying the Cramer-Rao inequality, at ideal and realistic levels. The orbital Pursuit-Evasion Game is typically formulated as a complete-information optimal control problem, in which both players’ payoff functions are common knowledge. However, a realistic scenario is characterized by lack of the opponent payoff information, which limits the ability to play optimally. To tackle this challenge, an unscented Kalman filter is implemented to make the evader accurately estimate pursuer’s private information, and Non-Zero Sum Game theory is exploited to obtain the optimal evasion strategy. On the other hand, the alternative proposal relies on the Observability Degree, a parameter linked to the pursuer’s observability. The latter can be described by introducing the Fisher matrix, that collects the information about unobservable states contained in the measured parameters. The optimal solution that minimizes the aforementioned index makes pursuer’s estimations deviate from reality, impairing its tracking capabilities and making it impossible for the hostile chaser to accurately approach the spacecraft. All the proposed strategies are theoretically described and the same scenario is simulated to compare the results, which show effective evasive actions for both impulsive and continuous low thrust applications.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Capitanio_Thesis_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Thesis
Dimensione
6.92 MB
Formato
Adobe PDF
|
6.92 MB | Adobe PDF | Visualizza/Apri |
2024_04_Capitanio_Executive_Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218740