In recent decades, magnesium and its alloys have been attracting more and more interest as a material suitable for temporary orthopedic devices, due to the biodegradability and to the mechanical properties similar to those of bone. The main obstacle to its use is premature degradation, compared to the bone healing times. For this reason, various solutions are being explored, including Plasma Electrolytic Oxidation (PEO) treatment. This technique allows the creation of surface films potentially capable of delaying the material degradation and avoid the loss of mechanical integrity as well as an excessive release of hydrogen gas, which is harmful to body tissues. An interesting approach to try to overcome the problems of the PEO technique concerns soft sparking: a variant in which the traditional positive polarization of the sample is alternated with a negative one. This strategy could potentially allow the creation of compact films, with good resistance to corrosion, through a less aggressive oxidation regime. In this work, an optimization of the parameters of the PEO was conducted, trying to replicate the soft sparking on an AZ31 alloy substrate, to improve the compaction and corrosion resistance of the coating. In particular, as regards the waveform, the type of shape and duration of the anodic phase have been varied. The coatings obtained were characterized, in terms of morphology and composition, by SEM – EDS technique. Electrochemical tests were then carried out to study the resistance to corrosion in a simulated physiological environment and scratch tests to evaluate the internal cohesion of the coating and its adhesion to the substrate. The soft sparking phenomena were, in part, reproduced and the best results, in terms of depth, cohesion and homogeneity of the coating, were obtained on a sample with a reduced interface, applying for 20 minutes a quadratic waveform, with a 25% of anode duty cycle.
Negli ultimi decenni, il magnesio e le sue leghe stanno suscitando sempre più interesse come materiale adatto alla realizzazione di dispositivi ortopedici temporanei, per via della biodegradabilità e delle proprietà meccaniche simili a quelle dell’osso. L’ostacolo principale al suo impiego è la degradazione precoce, rispetto ai tempi di guarigione dell’osso. Per questo motivo si stanno esplorando diverse soluzioni, tra cui il trattamento di Ossidazione Elettrolitica al Plasma (PEO). Tale tecnica permette di creare film superficiali potenzialmente in grado di ritardare la degradazione del materiale ed evitare la perdita d’integrità meccanica, così come un rilascio eccessivo di idrogeno gassoso, nocivo per i tessuti corporei. Un approccio interessante per cercare di ovviare alle problematiche della tecnica PEO riguarda il soft sparking: una variante in cui, alla tradizionale polarizzazione positiva del campione, se ne alterna una negativa. Questa strategia potrebbe, potenzialmente, permettere di realizzare film compatti, con buona resistenza alla corrosione, mediante un regime d’ossidazione meno aggressivo. In questo lavoro è stata svolta un’ottimizzazione dei parametri PEO, cercando di replicare il soft sparking su un substrato di lega AZ31, per migliorare il compattamento e la resistenza a corrosione del rivestimento. In particolare, per quanto riguarda la forma d’onda, sono stati variati il tipo di forma e la durata della fase anodica. I rivestimenti ottenuti sono stati caratterizzati, in termini di morfologia e composizione, tramite tecnica SEM - EDS. Sono stati, poi, svolti test elettrochimici per studiare la resistenza alla corrosione in ambiente fisiologico simulato e prove di scratch per valutare la coesione interna al rivestimento e la sua adesione al substrato. I fenomeni del soft sparking sono stati, in parte, riprodotti e i risultati migliori, in termini di profondità, coesione e omogeneità del rivestimento, sono stati ottenuti su un campione con interfaccia ridotta, applicando per 20 minuti una forma d’onda quadratica, con 25% di duty cycle anodico.
Ottimizzazione di un rivestimento protettivo su lega di magnesio mediante tecnica Plasma Electrolytic Oxidation
Castiglioni, Marco
2022/2023
Abstract
In recent decades, magnesium and its alloys have been attracting more and more interest as a material suitable for temporary orthopedic devices, due to the biodegradability and to the mechanical properties similar to those of bone. The main obstacle to its use is premature degradation, compared to the bone healing times. For this reason, various solutions are being explored, including Plasma Electrolytic Oxidation (PEO) treatment. This technique allows the creation of surface films potentially capable of delaying the material degradation and avoid the loss of mechanical integrity as well as an excessive release of hydrogen gas, which is harmful to body tissues. An interesting approach to try to overcome the problems of the PEO technique concerns soft sparking: a variant in which the traditional positive polarization of the sample is alternated with a negative one. This strategy could potentially allow the creation of compact films, with good resistance to corrosion, through a less aggressive oxidation regime. In this work, an optimization of the parameters of the PEO was conducted, trying to replicate the soft sparking on an AZ31 alloy substrate, to improve the compaction and corrosion resistance of the coating. In particular, as regards the waveform, the type of shape and duration of the anodic phase have been varied. The coatings obtained were characterized, in terms of morphology and composition, by SEM – EDS technique. Electrochemical tests were then carried out to study the resistance to corrosion in a simulated physiological environment and scratch tests to evaluate the internal cohesion of the coating and its adhesion to the substrate. The soft sparking phenomena were, in part, reproduced and the best results, in terms of depth, cohesion and homogeneity of the coating, were obtained on a sample with a reduced interface, applying for 20 minutes a quadratic waveform, with a 25% of anode duty cycle.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Castiglioni_Executive Summery_02.pdf
accessibile in internet per tutti
Descrizione: Sommario Esecutivo
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
2024_04_Castiglioni_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
6.33 MB
Formato
Adobe PDF
|
6.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218795