3D printing technology has revolutionized many areas of the industrial and biomedical sectors, offering countless production advantages, from greater freedom in designing geometries to the automation of the production process; the application to the case of civil constructions, already traditionally set up according to the "additive manufacturing" model, poses considerable difficulties. The development of cement-based printing inks that have adequate flowability, extrudability, buildability and can set quickly enough to meet the requirements of the 3D printing process remains a significant challenge in the application of 3D printing in the construction industry and has been subject of active research in recent years. In this context, the Italian startup HINFRA aims to revolutionize current tunnel renovation and retrofitting technologies with the project called ETLR (Extruded Tunnel Lining Regeneration), i.e. the design and construction of a machine operating according to the "3DCP slipforming" technique (3D Concrete Printing), i.e. a machine that simultaneously acts as a 3D printer and reusable formwork, capable of moving forward once the material has hardened. In this thesis work the intent is to analyze a series of hardening states of a concrete mix candidate for use in the ETLR project: starting from the fluid state, at which concrete is pumped and casted into a formwork, the mechanical properties of the material will be studied through finite element fluid simulations, then trying to define an adequate failure domain for the intermediate plastic phase and finally tracing the bending moment – axial force domain of a solid state tunnel section. For each phase, an attempt will be made to define the hardening times that mark the transition from one phase to another in a methodical and standardized manner, so as to establish the progress times of the machinery in place and make the process as efficient as possible.
La tecnologia della stampa 3D ha rivoluzionato molti ambiti del settore industriale e biomedicale, offrendo innumerevoli vantaggi produttivi, dalla maggiore libertà nella progettazione delle geometrie all'automazione del processo produttivo; l'applicazione al caso delle costruzioni civili, già tradizionalmente impostate secondo il modello della "manifattura additiva", pone notevoli difficoltà. Lo sviluppo di inchiostri da stampa a base di cemento che abbiano adeguate caratteristiche di fluidità, estrudibilità, costruibilità e che possano indurire abbastanza rapidamente da soddisfare i requisiti del processo di stampa 3D rimane una sfida significativa nell'applicazione della stampa 3D nel settore delle costruzioni ed è stata oggetto di ricerca attiva negli ultimi anni. In questo contesto, la startup italiana HINFRA si propone di rivoluzionare le attuali tecnologie di ristrutturazione e retrofitting delle gallerie con il progetto denominato ETLR (Extruded Tunnel Lining Regeneration), ovvero la progettazione e la costruzione di una macchina che opera secondo la tecnica "slipforming 3DCP" (3D Concrete Printing), ovvero una macchina che funge contemporaneamente da stampante 3D e da cassaforma riutilizzabile, in grado di avanzare una volta che il materiale si è indurito. In questo lavoro di tesi si intende analizzare una serie di stati di indurimento di un conglomerato cementizio candidato all'impiego nel progetto ETLR: partendo dallo stato fluido, in cui il calcestruzzo viene pompato e gettato in una cassaforma, si studieranno le proprietà meccaniche del materiale attraverso simulazioni di fluidi agli elementi finiti, cercando poi di definire un adeguato dominio di rottura per la fase plastica intermedia e tracciando infine il dominio momento flettente - azione assiale di una sezione di galleria allo stato solido. Per ogni fase si cercheranno di definire i tempi di indurimento che segnano il passaggio da una fase ad un’altra in modo metodico e standardizzato, così da stabilire i tempi di avanzamento dei macchinari in opera e rendere il processo il più efficiente possibile.
Analysis at different hardening states of fibre-reinforced concrete for tunnel retrofitting
Zarantonello, Federico
2022/2023
Abstract
3D printing technology has revolutionized many areas of the industrial and biomedical sectors, offering countless production advantages, from greater freedom in designing geometries to the automation of the production process; the application to the case of civil constructions, already traditionally set up according to the "additive manufacturing" model, poses considerable difficulties. The development of cement-based printing inks that have adequate flowability, extrudability, buildability and can set quickly enough to meet the requirements of the 3D printing process remains a significant challenge in the application of 3D printing in the construction industry and has been subject of active research in recent years. In this context, the Italian startup HINFRA aims to revolutionize current tunnel renovation and retrofitting technologies with the project called ETLR (Extruded Tunnel Lining Regeneration), i.e. the design and construction of a machine operating according to the "3DCP slipforming" technique (3D Concrete Printing), i.e. a machine that simultaneously acts as a 3D printer and reusable formwork, capable of moving forward once the material has hardened. In this thesis work the intent is to analyze a series of hardening states of a concrete mix candidate for use in the ETLR project: starting from the fluid state, at which concrete is pumped and casted into a formwork, the mechanical properties of the material will be studied through finite element fluid simulations, then trying to define an adequate failure domain for the intermediate plastic phase and finally tracing the bending moment – axial force domain of a solid state tunnel section. For each phase, an attempt will be made to define the hardening times that mark the transition from one phase to another in a methodical and standardized manner, so as to establish the progress times of the machinery in place and make the process as efficient as possible.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Zarantonello_Tesi.pdf.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della Tesi
Dimensione
5.63 MB
Formato
Adobe PDF
|
5.63 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218800