Conjugate Heat Transfer (CHT) has primarily importance in scenarios involving connected sub-domains governed by different heat transfer equations, such as human respiration, where heat exchange occurs between inspired air (fluid) and respiratory mucous (considered as a solid in this work). The choice of a CHT approach is mandatory when a higher level of accuracy is required and a constant wall temperature condition fails to provide a reliable solution. However, CHT entails higher computational costs, due to additional equations and sub-domains coupling, and longer pre-processing time. To address these challenges, this study employs asymptotic homogenization theory, applicable given the presence of well separated length scales, to derive an effective temperature boundary condition for smooth solid-fluid interfaces, eliminating the need for resolving the thin solid layer. Firstly, validation simulations have been conducted with simple channel geometries and have exhibit strong agreement between the results obtained using the homogenized boundary condition and those from full CHT simulations, particularly for thinner solid layers. Subsequently, the derived boundary condition is applied to nasal airflow simulations, effectively replacing the need to fully resolve the thin mucous layer. Several simulations have been performed by varying the environmental temperature, to evaluate the correlation of the error, defined as the difference between the temperature calculated with the homogenized boundary condition and with full CHT simulations, with the increase in temperature difference between the exterior and the human body. It has been found that the error increases as the thermal jump in the domain increases. However, the relative percentage error, with respect to the temperature jump, remains constant, reaching a maximum of 1% only in some sections of the nose that are particularly thin and highly curved. Using the derived model, problems involving conjugate heat transfer can be solved with approximately 30% reduced computational time and 40% reduced cost, while ensuring greater accuracy compared to when a constant wall temperature boundary condition is employed.
Lo scambio termico coniugato (CHT) riveste un’importanza cruciale in scenari che coinvolgono sotto domini interconnessi e il trasferimento di calore, come ad esempio nella respirazione umana, dove si verifica lo scambio termico tra l’aria inspirata (fluido) e la mucosa respiratoria (considerata solida in questo lavoro). L’adozione di un approccio CHT è necessaria quando si richiede un livello di precisione elevato e imporre semplicemente una condizione di temperatura costante a parete non fornisce una soluzione realistica. Tuttavia, il CHT comporta un maggiore costo e tempo computazionale, inoltre richiede una realizzazione del dominio di calcolo più complicata. Per questi motivi, questo studio utilizza la teoria dell’omogeneizzazione asintotica per derivare una condizione al contorno di temperatura da imporre all’interfaccia tra solido e fluido per una parete liscia, eliminando la necessità di simulare il sottile strato di solido. A scopo di validazione, sono eseguite delle simulazioni con geometrie semplificate di condotti. I risultati, ottenuti utilizzando la condizione al contorno omogeneizzata e le simulazioni CHT complete, hanno mostrato un ottimo accordo, soprattutto per uno spessore di solido sottile. Successivamente, la condizione al contorno è stata applicata al caso del naso. Sono state condotte diverse simulazioni variando la temperatura ambiente, per valutare la correlazione dell’errore, definito come la differenza tra la temperatura calcolata con la condizione al contorno omogeneizzata e con le simulazioni CHT complete, con l’incremento della differenza di temperatura tra l’esterno e il corpo umano. L’errore aumenta all’aumentare del salto termico nel dominio; tuttavia, l’errore percentuale relativo al salto termico rimane costante, raggiungendo un massimo dell’1% in sezioni particolarmente sottili e fortemente curve della cavità nasale. Utilizzando il modello derivato in questa tesi, i problemi di scambio termico coniugato possono essere risolti con circa il 30% di riduzione del tempo di calcolo e il 40% di riduzione del costo computazionale, garantendo una maggiore accuratezza rispetto a una condizione di temperatura costante.
Analytical modelling of Conjugate Heat Transfer for the nasal flow
PENNISI, MARIA VITTORIA
2022/2023
Abstract
Conjugate Heat Transfer (CHT) has primarily importance in scenarios involving connected sub-domains governed by different heat transfer equations, such as human respiration, where heat exchange occurs between inspired air (fluid) and respiratory mucous (considered as a solid in this work). The choice of a CHT approach is mandatory when a higher level of accuracy is required and a constant wall temperature condition fails to provide a reliable solution. However, CHT entails higher computational costs, due to additional equations and sub-domains coupling, and longer pre-processing time. To address these challenges, this study employs asymptotic homogenization theory, applicable given the presence of well separated length scales, to derive an effective temperature boundary condition for smooth solid-fluid interfaces, eliminating the need for resolving the thin solid layer. Firstly, validation simulations have been conducted with simple channel geometries and have exhibit strong agreement between the results obtained using the homogenized boundary condition and those from full CHT simulations, particularly for thinner solid layers. Subsequently, the derived boundary condition is applied to nasal airflow simulations, effectively replacing the need to fully resolve the thin mucous layer. Several simulations have been performed by varying the environmental temperature, to evaluate the correlation of the error, defined as the difference between the temperature calculated with the homogenized boundary condition and with full CHT simulations, with the increase in temperature difference between the exterior and the human body. It has been found that the error increases as the thermal jump in the domain increases. However, the relative percentage error, with respect to the temperature jump, remains constant, reaching a maximum of 1% only in some sections of the nose that are particularly thin and highly curved. Using the derived model, problems involving conjugate heat transfer can be solved with approximately 30% reduced computational time and 40% reduced cost, while ensuring greater accuracy compared to when a constant wall temperature boundary condition is employed.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Pennisi_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
16.52 MB
Formato
Adobe PDF
|
16.52 MB | Adobe PDF | Visualizza/Apri |
2024_04_Pennisi_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
7.18 MB
Formato
Adobe PDF
|
7.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218802