Climate change is one of the challenges that society faces today. Photovoltaic is one of the most important renewable energies, and it is gaining popularity all over the world. The assessment of potential and exploitation of solar energy for the building sector has become a prerequisite for sustainable development. The building industry plays a critical role in lowering carbon emissions, facilitating the transition to renewable energy, and promoting sustainability. Legislative measures such as the Energy Performance of Build-ings Directive (EPBD) have accelerated the adoption of energy-efficient buildings in the European Union. In terms of decarbonization, such efforts could be achieved by massive-ly applying Renewable Energy Sources (RES) both in new buildings as well as in existing ones, which account for majority of the EU building stock. For such reason, Today, building-integrated photovoltaic (BIPV) is being considered by building designers as an innovative technique for clean energy production and reduc-tion of greenhouse gases. Integration of PV cells in the building envelope can help in overcoming many economic and social barriers that are preventing a wider dissemination of the technology in the Mediterranean area. The BIPV components are multifunctional elements that can be used not only as energy converters, but also as shading devices, cladding, façade, or roofing elements, etc. Building-Integrated/Applied Photovoltaic (BIPV/BAPV) systems offer a promising avenue for providing clean energy and has enor-mous potential for on-site renewable energy generation to the building sector. However, BIPV systems are still in a nascent stage with few commercial installations. Nonetheless, despite their potential, the practical implementation of these systems on buildings faces feasibility constraints, due to limitation of the available installation surface. The research presented in this paper conducts a comprehensive evaluation of the potential for BIPV/BAPV installations to fulfil the electricity needs of residential buildings by evaluating both energy and building features of the built environment. The results in-dicate that such systems can potentially cover the entire energy consumption require-ments for heating, cooling, domestic hot water, and lighting in buildings up to approxi-mately five storeys, depending on factors such as climatic conditions, roof design, and overall building energy efficiency level. The primary project findings can be duplicated to create the impact needed to sup-port the transfer and adoption of integrated PV (BIPV) in the renovation of the built envi-ronment over the next several years. The article provides an overview of this research by presenting the primary motivations, methodological features, and discussion of the out-comes.
Il cambiamento climatico è una delle sfide più delicate che la società odierna si trova ad affrontare quotidianamente, rendendo necessaria l’introduzione di fonti di energia rinnovabili.Tra queste spicca senza ombra di dubbio il fotovoltaico, che sta progressivamente acquisendo popolarità in tutto il mondo.La valutazione del potenziale e dello sfruttamento dell’energia solare per il settore edile è diventato un prerequisito per lo sviluppo sostenibile. Il settore edile svolge un ruolo fondamentale nel ridurre le emissioni di carbonio, nel facilitare la transizione verso le energie rinnovabili e nel promuovere la sostenibilità. Misure legislative come la Direttiva sulla prestazione energetica nell’edilizia (EPBD) hanno accelerato l’adozione di edifici ad alta efficienza energetica nell’Unione Europea. In termini di decarbonizzazione, tali sforzi potrebbero essere raggiunti applicando in modo massiccio le fonti energetiche rinnovabili (FER) sia nei nuovi edifici che in quelli esistenti, che rappresentano la maggior parte del parco immobiliare dell’UE. Per tale motivo oggi, il fotovoltaico integrato negli edifici (BIPV), è considerato dai progettisti edili come una tecnica innovativa per la produzione di energia pulita e la riduzione dei gas serra. L’integrazione delle celle fotovoltaiche nell’involucro edilizio può aiutare a superare molte barriere economiche e sociali che impediscono una più ampia diffusione della tecnologia nell’area del Mediterraneo. I componenti BIPV sono elementi multifunzionali che possono essere utilizzati non solo come convertitori di energia, ma anche come dispositivi di ombreggiatura, rivestimento, elementi di facciata o di copertura, ecc. I sistemi fotovoltaici integrati/applicati (BIPV/BAPV) offrono una strada promettente per fornire energia pulita e presentano un enorme potenziale per la generazione in loco di energia rinnovabile per il settore edilizio. Nonostante ciò, i sistemi BIPV sono ancora in una fase relativamente nascente, con poche installazioni commerciali; difatti, nonostante il loro potenziale, l’implementazione pratica di questi sistemi sugli edifici incontra limiti di fattibilità, principalmente a causa della limitazione della superficie di installazione disponibile. La ricerca presentata in questo documento conduce una valutazione completa del potenziale degli impianti BIPV/BAPV di soddisfare il fabbisogno elettrico degli edifici residenziali, valutando sia le caratteristiche energetiche che quelle costruttive dell’ambiente costruito. I risultati indicano che tali sistemi possono potenzialmente coprire l’intero fabbisogno di consumo energetico per riscaldamento, raffreddamento, acqua calda sanitaria e illuminazione in edifici fino a circa cinque piani, a seconda di fattori quali le condizioni climatiche, la progettazione del tetto e il livello di efficienza energetica generale dell’edificio. I risultati principali del progetto possono essere duplicati per creare l’impatto necessario a supportare il trasferimento e l’adozione del fotovoltaico integrato (BIPV) nella ristrutturazione dell’ambiente edificato nei prossimi anni. L’articolo fornisce una panoramica di questa ricerca presentando le motivazioni principali, le caratteristiche metodologiche e la discussione dei risultati.
The role of photovoltaic technology in achieving energy self-sufficiency in residential buildings
ABDELRAOUF MUSTAFA GALAL ABDELRAHIM
2023/2024
Abstract
Climate change is one of the challenges that society faces today. Photovoltaic is one of the most important renewable energies, and it is gaining popularity all over the world. The assessment of potential and exploitation of solar energy for the building sector has become a prerequisite for sustainable development. The building industry plays a critical role in lowering carbon emissions, facilitating the transition to renewable energy, and promoting sustainability. Legislative measures such as the Energy Performance of Build-ings Directive (EPBD) have accelerated the adoption of energy-efficient buildings in the European Union. In terms of decarbonization, such efforts could be achieved by massive-ly applying Renewable Energy Sources (RES) both in new buildings as well as in existing ones, which account for majority of the EU building stock. For such reason, Today, building-integrated photovoltaic (BIPV) is being considered by building designers as an innovative technique for clean energy production and reduc-tion of greenhouse gases. Integration of PV cells in the building envelope can help in overcoming many economic and social barriers that are preventing a wider dissemination of the technology in the Mediterranean area. The BIPV components are multifunctional elements that can be used not only as energy converters, but also as shading devices, cladding, façade, or roofing elements, etc. Building-Integrated/Applied Photovoltaic (BIPV/BAPV) systems offer a promising avenue for providing clean energy and has enor-mous potential for on-site renewable energy generation to the building sector. However, BIPV systems are still in a nascent stage with few commercial installations. Nonetheless, despite their potential, the practical implementation of these systems on buildings faces feasibility constraints, due to limitation of the available installation surface. The research presented in this paper conducts a comprehensive evaluation of the potential for BIPV/BAPV installations to fulfil the electricity needs of residential buildings by evaluating both energy and building features of the built environment. The results in-dicate that such systems can potentially cover the entire energy consumption require-ments for heating, cooling, domestic hot water, and lighting in buildings up to approxi-mately five storeys, depending on factors such as climatic conditions, roof design, and overall building energy efficiency level. The primary project findings can be duplicated to create the impact needed to sup-port the transfer and adoption of integrated PV (BIPV) in the renovation of the built envi-ronment over the next several years. The article provides an overview of this research by presenting the primary motivations, methodological features, and discussion of the out-comes.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Abdelrahim.pdf
accessibile in internet per tutti
Descrizione: Thesis draft
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/218850