TType A Aortic dissection (TAAD) is a rare and lethal syndrome that involves the ascending aorta, leading to macroscopic aortic wall damage. Indications for preventive surgery are currently based on non-fully reliable morphological criteria: ascending aorta surgical replacement is recommended when the vessel diameter reaches 5.5 cm, yet more than 50\% of dissections develop in patients with smaller diameters. Other risk factors have been recently investigated; among these the ASC-ARCH angle (AAa) seems promising, as it is significantly narrower in patients with TAAD and may hence discriminate them. Through advanced finite element (FE) simulations, here the impact of the AAa on the stresses in the ascending aorta wall, which could contribute to the progression towards TAAD is investigated. From the CT scans of 124 subjects with healthy aortas the 3D geometry of the vessel was obtained: 3D models were aligned and parametrized to then compute their average centerline and the average local cross sections, which were used to generate the baseline geometrical model, which was characterized by a 145° AAa. Seven variant models with AAa spanning from 110° to 140° and with the same lumen size were generated. A uniform 1.5 mm wall thickness was assumed in every model. Aortic models were discretized into 8-node hexahedral elements using ANSA with a 1 mm element size and were embedded in a brick-shaped equivalent continuum that was discretized into 4-node tetrahedrons in continuity with the aortic mesh. Arterial wall tissue was modeled as hyperelastic, transversally isotropic and incompressible through the Holzapfel-Gasser-Odgen model. The surrounding continuum was modeled as linear elastic and isotropic, with 0.05 MPa Young modulus and 0.47 Poisson ratio. For each geometry two static simulations were performed using the Abaqus/Standard solver (Dassault Systèmes). First, the stress-free configuration was identified through the augmented-Sellier method. Second, a two- step simulation was run starting from the stress-free configuration. The simulation results showed that when AAas not wider that 125° were considered, significantly increased longitudinal stresses in the inner layer of the aorta were computed. Based on the obtained results it can be concluded that abnormal geometries with narrower AAs determine an increase in longitudinal stresses in the ascending aorta, consistently with the associated higher prevalence of TAAD reported in literature.
La dissezione di tipo A è una patologia rara e letale che coinvolge l'aorta ascendente e che risulta in un danneggiamento macroscopico della parete. Le guidelines fornite indicano di procedere chirurgicamente sulla base di dati morfologici non completamente attendibili: la sostituzione del tratto di aorta ascendente danneggiato è consigliata quando il diametro maggiore del vaso raggiunge i 5.5 cm; tuttavia, più del 50\% delle dissezioni si verifica a diametri inferiori. Altri fattori di rischio sono stati recentemente analizzati: tra questi l'angolo ASC-ARCH (AAa) sembra promettente essendo significativamente più stretto in pazienti con TAAD. Potrebbe quindi permettere una più efficace discriminazione delle geometrie a rischio. L'obiettivo di questo lavoro è di valutare l'impatto dell'angolo AAa sugli sforzi nella parete dell'aorta ascendente attraverso simulazioni ad elementi finiti. A partire da immagini CT di 124 pazienti con aorta sane è stata ottenuta la geometria 3D del vaso. I modelli 3D sono stati allineati e parametrizzati per poi calcolare la loro centerline media e le sezioni locali medie, che sono poi state utilizzate per generare il modello solido di base caratterizzato da un AAa di 145°. A partire dalla geometria di base sono stati generati sette ulteriori modelli con AAa che varia da 110° a 140° mantenendo le stesse dimensioni del lume. Le geometrie aortiche così ottenute sono state discretizzate in elementi esaedrici a 8-nodi utilizzando ANSA (Beta CAE Systems) con lunghezza caratteristica di un 1 mm. Quindi le geometrie sono state inserite all'interno di un continuo esaedrico solido discretizzato in elementi tetraedrici a 4.nodi. All'interfaccia tra il brick e il modello aortico è stata garantita una connessione nodo a nodo. Il tessuto della parete aortica è stato descritto come un materiale iperelastico, trasversalmente isotropo e incomprimibile attraverso il modello costitutivo di Holzapfeel-Gasser-Odgen. Il brick circostante è stato descritto come un materiale elastico lineare isotropo con un modulo elastico uguale a 0.05 MPa e un coefficiente di Poisson uguale a 0.47. Due simulazioni sono state implementate per ciascuna geometria utilizzando il solutore Abaqus/Standard (Dassult Systèmes). Per prima cosa, è stata identificata la configurazione stress-free del vaso attraverso l'algoritmo di Sellier. Quindi, è stata implementata una simulazione a due step a partire dalla configurazione scarica trovata. I risultati delle simulazioni mostrano che, quando si considerano angoli minori di 125°, è stato osservato un aumento significativo degli sforzi nel primo strato della parete aortica. Sulla base di questi risultati si può concludere che geometrie con angoli AAa più stretti determinano quindi un aumento degli sforzi longitudinali sulla parete dell'aorta ascendente in maniera consistente con l'aumentata prevalenza di TAAD riportata in letteratura.
Investigating the role of an emerging risk factor for type A aortic dissection in an automatically generated virtual population through advanced finite element simulations
Ianniruberto, Ione
2022/2023
Abstract
TType A Aortic dissection (TAAD) is a rare and lethal syndrome that involves the ascending aorta, leading to macroscopic aortic wall damage. Indications for preventive surgery are currently based on non-fully reliable morphological criteria: ascending aorta surgical replacement is recommended when the vessel diameter reaches 5.5 cm, yet more than 50\% of dissections develop in patients with smaller diameters. Other risk factors have been recently investigated; among these the ASC-ARCH angle (AAa) seems promising, as it is significantly narrower in patients with TAAD and may hence discriminate them. Through advanced finite element (FE) simulations, here the impact of the AAa on the stresses in the ascending aorta wall, which could contribute to the progression towards TAAD is investigated. From the CT scans of 124 subjects with healthy aortas the 3D geometry of the vessel was obtained: 3D models were aligned and parametrized to then compute their average centerline and the average local cross sections, which were used to generate the baseline geometrical model, which was characterized by a 145° AAa. Seven variant models with AAa spanning from 110° to 140° and with the same lumen size were generated. A uniform 1.5 mm wall thickness was assumed in every model. Aortic models were discretized into 8-node hexahedral elements using ANSA with a 1 mm element size and were embedded in a brick-shaped equivalent continuum that was discretized into 4-node tetrahedrons in continuity with the aortic mesh. Arterial wall tissue was modeled as hyperelastic, transversally isotropic and incompressible through the Holzapfel-Gasser-Odgen model. The surrounding continuum was modeled as linear elastic and isotropic, with 0.05 MPa Young modulus and 0.47 Poisson ratio. For each geometry two static simulations were performed using the Abaqus/Standard solver (Dassault Systèmes). First, the stress-free configuration was identified through the augmented-Sellier method. Second, a two- step simulation was run starting from the stress-free configuration. The simulation results showed that when AAas not wider that 125° were considered, significantly increased longitudinal stresses in the inner layer of the aorta were computed. Based on the obtained results it can be concluded that abnormal geometries with narrower AAs determine an increase in longitudinal stresses in the ascending aorta, consistently with the associated higher prevalence of TAAD reported in literature.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Ianniruberto_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
18.57 MB
Formato
Adobe PDF
|
18.57 MB | Adobe PDF | Visualizza/Apri |
2024_04_Ianniruberto_Executive_Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
969.36 kB
Formato
Adobe PDF
|
969.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219024