The first part of the thesis was largely developed in collaboration with the previous thesis student, Bottà, and involves identifying an aerodynamic model of the SwitchMaster, a scaled demonstrator with DEP. Specifically, each stability and control derivative of the aircraft was defined as the sum of an unblown contribution and a blown contribution (due to DEP). Aerodynamic parameters were identified through a series of flight tests for a discrete number of advance ratios, the parameters that describe the blowing effect on the wing. The results were then fitted using continuous exponential functions, revealing clear trends for some aerodynamic coefficients. Subsequent analysis has observed that the measured data, and thus the output error results, are scattered, which limits the definition of blowing models, although the approach has been shown to be correct. This scattering is caused by the untrimmed conditions before the doublets; so, new flight tests need to be performed to re-obtain some parameters. The second part of the thesis is focused on implementing a controller to maintain altitude and airspeed, thus obtaining more accurate measurements from test flights. Prior to implementing the autopilot, it was necessary to define a model for both the longitudinal and lateral-directional dynamics of SwitchMaster; these models were linearized for a certain unblown reference condition. Regarding the autopilot, after some analysis, it was decided to use the methodology known as TECS to control the longitudinal dynamics, and specifically to achieve and maintain a specific altitude and speed automatically. The advantage of using TECS is that it considers the control problem in terms of energy, allowing for complete decoupling between controls and, consequently, between the variables to be controlled. This control system was tested using Simulink, demonstrating validity in terms of both performance and robustness. In conclusion, it was also observed, through a simulation on Simulink, that it would be possible to conduct a fully automated test campaign (excluding takeoff and landing, which are performed manually), thereby accurately identifying aerodynamic parameters.
La prima parte della tesi è stata sviluppata in gran parte in collaborazione con il precedente tesista, Bottà, e consiste nell'identificazione di un modello aerodinamico di SwitchMaster, un dimostratore in scala a DEP. Nello specifico, ogni derivata di S&C del velivolo è stata definita come la somma di un contributo non soffiato e di un contributo soffiato, dovuto alla DEP. Tramite una campagna di prove in volo sono stati identificati i parametri aerodinamici per un discreto numero di advance ratio, ovvero la quantità che descrive il soffiaggio sull'ala. I risultati sono stati poi uniti da funzioni esponenziali continue, osservando dei chiari andamenti per alcuni coefficienti aerodinamici. Da successive analisi si è osservato che i dati misurati, e quindi i risultati dell’output error, sono sparsi, ciò limita la definizione dei blowing models, nonostante l’approccio si sia dimostrato corretto. Questa dispersione è causata dalle condizioni non equilibrate prima delle doppiette; quindi, sarà necessario eseguire nuove prove in volo per riottenere alcuni parametri. Nella seconda parte della tesi ci si è concentrati sull'implementazione di un controllore per mantenere quota e velocità, così da ottenere misure più precise dai voli di prova. Prima dell'autopilota è stato però necessario definire un modello sia della dinamica longitudinale che latero-direzionale del velivolo; questo modello è stato linearizzato per una certa condizione di riferimento poco soffiata. Per quanto riguarda invece l'autopilota, dopo alcune analisi, si è deciso di sfruttare la metodologia TECS per controllare la dinamica longitudinale. Il vantaggio di usare TECS è che permette di considerare il problema del controllo in termini energetici, consentendo un completo disaccoppiamento tra i comandi, e quindi tra le variabili da controllare. Questo sistema di controllo è stato testato su Simulink, dimostrando di essere valido sia in termini di prestazioni che di robustezza. In conclusione, si è anche osservato, grazie ad una simulazione su Simulink, che sarebbe possibile eseguire una campagna di prove completamente in automatico, in modo da poter identificare perfettamente i parametri aerodinamici.
Identification of the aerodynamics of a distributed electric propulsion demonstrator: towards the definition of a fully automated testing campaign
GERMINARIO, LORENZO
2022/2023
Abstract
The first part of the thesis was largely developed in collaboration with the previous thesis student, Bottà, and involves identifying an aerodynamic model of the SwitchMaster, a scaled demonstrator with DEP. Specifically, each stability and control derivative of the aircraft was defined as the sum of an unblown contribution and a blown contribution (due to DEP). Aerodynamic parameters were identified through a series of flight tests for a discrete number of advance ratios, the parameters that describe the blowing effect on the wing. The results were then fitted using continuous exponential functions, revealing clear trends for some aerodynamic coefficients. Subsequent analysis has observed that the measured data, and thus the output error results, are scattered, which limits the definition of blowing models, although the approach has been shown to be correct. This scattering is caused by the untrimmed conditions before the doublets; so, new flight tests need to be performed to re-obtain some parameters. The second part of the thesis is focused on implementing a controller to maintain altitude and airspeed, thus obtaining more accurate measurements from test flights. Prior to implementing the autopilot, it was necessary to define a model for both the longitudinal and lateral-directional dynamics of SwitchMaster; these models were linearized for a certain unblown reference condition. Regarding the autopilot, after some analysis, it was decided to use the methodology known as TECS to control the longitudinal dynamics, and specifically to achieve and maintain a specific altitude and speed automatically. The advantage of using TECS is that it considers the control problem in terms of energy, allowing for complete decoupling between controls and, consequently, between the variables to be controlled. This control system was tested using Simulink, demonstrating validity in terms of both performance and robustness. In conclusion, it was also observed, through a simulation on Simulink, that it would be possible to conduct a fully automated test campaign (excluding takeoff and landing, which are performed manually), thereby accurately identifying aerodynamic parameters.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Germinario_Tesi_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
21.53 MB
Formato
Adobe PDF
|
21.53 MB | Adobe PDF | Visualizza/Apri |
2024_04_Germinario_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive summary
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219028