Congenital Heart Disease (CHD) is the most common type of birth defect worldwide and refers to an umbrella of highly patient-specific cardiac anomalies. Such defects can be present in isolation or in association with each other, resulting in highly complex anatomies. Some of the most prevalent CHDs are Ventral Septal Defects (VSD), Atrial Septal Defects (ASD), Patent Ductus Arteriosus (PDA), Tetralogy of Fallot (ToF), Transposition of the Great Arteries (TGA), Coarctation of the Aorta (CoA), and Hypoplastic Left Heart Syndrome (HLHS). These congenital defects manifest themselves with completely different morphology and degrees of severity. In this thesis, the objective is focused on HLHS and CoA and the solutions that can be achieved by designing a new ad hoc typology of stent. These pathologies can be defined as orphan diseases, since the lack of interest shown by the medical industries due to their very low incidence: the new stent design would be crucial, given the fact that these pathologies are treated with off-label stents (used in coronaries or peripheral arteries). To manufacture the new stent, laser powder bed fusion (LPBF), one of the most exploited techniques in Additive Manufacturing, could represent a possibility, given its high degree of complexity and also the advantage of being competitive with conventional manufacturing for low volumes of production (complexity for free). As for the choice of the material, Nickel-Titanium alloys (Nitinol) would be the best candidate, due to their mini-invasiveness in placing/replacing, exploiting the self-expandability given by the superelasticity of these alloys. Moreover, self-expandable stents made in Nitinol showed superior outcomes compared to balloonexpandable ones, in terms of invasiveness and survival rates. Thanks to parametric CAD design, it is possible to vary the stent geometry to best fit the geometry of the patient vessel and to satisfy the medical request regarding radial stiffness: this has been achieved by identifying correlations and dependencies between geometrical features and mechanical response. Moreover, since CHDs are discovered mostly during childhood, one crucial issue is represented by tissue growth, especially in CoA patients. For this reason, growth models of the aorta have been studied and evaluated, to create an easy numerical tool that could be of the best help in the scaling of patient-specific models. From this information, a patient-specific physio-pathological growth model for aorta and aorta with Coarctation has been developed, and its stenting procedure has been analyzed.
La cardiopatia congenita (CHD) è il tipo più comune di difetto alla nascita in tutto il mondo e si riferisce a un insieme di anomalie cardiache altamente specifiche per il paziente. Tali difetti possono essere presenti isolatamente o in associazione tra loro, dando origine ad anatomie molto complesse. Alcuni dei difetti cardiaci più diffusi sono i difetti del setto ventrale (VSD), i difetti del setto atriale (ASD), il dotto arterioso pervio (PDA), la tetralogia di Fallot (ToF), la trasposizione delle grandi arterie (TGA), la coartazione dell’aorta (CoA) e la sindrome del cuore sinistro ipoplasico (HLHS). Questi difetti congeniti si manifestano con morfologia e gradi di gravità completamente diversi. In questa tesi, l’obiettivo è focalizzato su HLHS e CoA e sulle soluzioni che si possono ottenere progettando una nuova tipologia di stent ad hoc. Queste patologie possono essere definite come malattie orfane, dato lo scarso interesse mostrato dalle industrie mediche a causa della loro bassissima incidenza: il nuovo design dello stent sarebbe cruciale, dato che queste patologie sono trattate con stent off-label (utilizzati nelle coronarie o nelle arterie periferiche). Per la fabbricazione del nuovo stent, la Laser-Powder Bed fusion (LPBF), una delle tecniche più sfruttate nell’Additive Manufacturing, potrebbe rappresentare una possibilità, dato il suo alto grado di complessità e anche il vantaggio di essere competitiva con la fabbricazione convenzionale per bassi volumi di produzione (complexity for freedom). Per quanto riguarda la scelta del materiale, le leghe di nichel-titanio (Nitinol) sarebbero le migliori candidate, per la loro mini-invasività nel posizionamento/sostituzione, sfruttando l’autoespandibilità data dalla superelasticità di queste leghe. Inoltre, gli stent autoespandibili in Nitinol hanno mostrato risultati superiori rispetto a quelli espandibili con palloncino, in termini di invasività e tassi di sopravvivenza. Grazie alla progettazione CAD parametrica, è possibile variare la geometria dello stent per adattarla al meglio alla geometria del vaso del paziente e per soddisfare la richiesta medica di rigidezza radiale: ciò è stato ottenuto identificando correlazioni e dipendenze tra caratteristiche geometriche e risposta meccanica. Inoltre, poiché le CHD vengono scoperte soprattutto durante l’infanzia, un problema cruciale è rappresentato dalla crescita dei tessuti, soprattutto nei pazienti con CoA. Per questo motivo, sono stati studiati e valutati modelli di crescita dell’aorta, per creare uno strumento numerico semplice che potesse essere di grande aiuto nel dimensionamento di modelli specifici per il paziente. Sulla base di queste informazioni, è stato sviluppato un modello di crescita fisio-patologica paziente-specifico per l’aorta e l’aorta con coartazione ed è stata analizzata la sua procedura di stenting.
In silico studies for improving the treatment of congenital heart diseases through stenting
Tarquini, Matteo
2022/2023
Abstract
Congenital Heart Disease (CHD) is the most common type of birth defect worldwide and refers to an umbrella of highly patient-specific cardiac anomalies. Such defects can be present in isolation or in association with each other, resulting in highly complex anatomies. Some of the most prevalent CHDs are Ventral Septal Defects (VSD), Atrial Septal Defects (ASD), Patent Ductus Arteriosus (PDA), Tetralogy of Fallot (ToF), Transposition of the Great Arteries (TGA), Coarctation of the Aorta (CoA), and Hypoplastic Left Heart Syndrome (HLHS). These congenital defects manifest themselves with completely different morphology and degrees of severity. In this thesis, the objective is focused on HLHS and CoA and the solutions that can be achieved by designing a new ad hoc typology of stent. These pathologies can be defined as orphan diseases, since the lack of interest shown by the medical industries due to their very low incidence: the new stent design would be crucial, given the fact that these pathologies are treated with off-label stents (used in coronaries or peripheral arteries). To manufacture the new stent, laser powder bed fusion (LPBF), one of the most exploited techniques in Additive Manufacturing, could represent a possibility, given its high degree of complexity and also the advantage of being competitive with conventional manufacturing for low volumes of production (complexity for free). As for the choice of the material, Nickel-Titanium alloys (Nitinol) would be the best candidate, due to their mini-invasiveness in placing/replacing, exploiting the self-expandability given by the superelasticity of these alloys. Moreover, self-expandable stents made in Nitinol showed superior outcomes compared to balloonexpandable ones, in terms of invasiveness and survival rates. Thanks to parametric CAD design, it is possible to vary the stent geometry to best fit the geometry of the patient vessel and to satisfy the medical request regarding radial stiffness: this has been achieved by identifying correlations and dependencies between geometrical features and mechanical response. Moreover, since CHDs are discovered mostly during childhood, one crucial issue is represented by tissue growth, especially in CoA patients. For this reason, growth models of the aorta have been studied and evaluated, to create an easy numerical tool that could be of the best help in the scaling of patient-specific models. From this information, a patient-specific physio-pathological growth model for aorta and aorta with Coarctation has been developed, and its stenting procedure has been analyzed.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Tarquini_01.pdf
non accessibile
Descrizione: Tesi
Dimensione
35.85 MB
Formato
Adobe PDF
|
35.85 MB | Adobe PDF | Visualizza/Apri |
2024_04_Tarquini_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
3.97 MB
Formato
Adobe PDF
|
3.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219049