The transport sector is responsible for about a quarter of global emissions. Road transport, still largely dependent on fossil fuels, is the main contributor to this share. On the other hand, the railway sector exhibits a high degree of electrification, representing a viable alternative for the decarbonisation of transport. In this context, a bottom-up model for the estimation of Italian railway energy demand is presented. The energy demand of Italian stations, classified into four archetypes (Platinum, Gold, Silver and Bronze) according to size and type of passenger services, is simulated using RAMP, an open-source energy model that provides a demand curve through a stochastic approach. In addition, a deterministic bottom-up model based on the Davis equation is presented to estimate the energy demand of Italian rolling stock, divided into conventional and high-speed. To validate its accuracy, the traction model is applied to a real route in southern Italy, obtaining an error of 6.22%. Then, through a sensitivity analysis, the factors that most influence the energy consumption of vehicles are identified: line slope, mass, and vehicle speed. Finally, two scenarios on the development of high-speed trains in Italy and their impact on national energy consumption are analysed. The proposed station model underestimates the energy demand of Platinum stations, the archetype for which reference values are available, by 3%. The proposed vehicle model does not yet give satisfactory results, overestimating the energy demand of Italian rolling stock by 15.9%. Further developments are therefore recommended. A future implementation of the traction demand model in RAMP is planned. The integrated model will provide a tool for the overall estimation of railway energy demand, providing an instrument for the decarbonisation of the transport sector, both in Italy and in other countries.
Il settore dei trasporti contribuisce per circa un quarto alle emissioni globali. Il principale responsabile è il trasporto su strada, un settore che dipende dai combustibili fossili in modo prevalente. Al contrario, il settore ferroviario presenta un alto grado di elettrificazione, rappresentando una valida alternativa per la decarbonizzazione dei trasporti. In questo contesto, un modello bottom-up per la stima del consumo energetico del settore ferroviario italiano viene presentato. La domanda energetica delle stazioni italiane, suddivise in quattro archetipi (Platinum, Gold, Silver e Bronze) in base alla grandezza e al tipo di servizi che offrono ai passeggeri, è simulata utilizzando RAMP, un modello energetico open-source che permette di ottenere una curva di domanda per mezzo di un approccio stocastico. Per quanto riguarda il consumo dei veicoli, suddivisi in convenzionali e alta velocità, un modello bottom-up deterministico basato sull’equazione di Davis viene presentato. Al fine di verificarne la validità, il modello è applicato ad una tratta reale nel sud Italia, ottenendo un errore del 6.22%. In seguito, per mezzo di una analisi di sensitività, sono individuati i fattori che più influenzano il consumo energetico dei veicoli: la pendenza della linea, la massa e la velocità dei veicoli. Infine, due scenari riguardanti lo sviluppo dell’alta velocità italiana e la sua ricaduta sul consumo energetico nazionale sono analizzati. Il modello di stazione proposto sottostima del 3% la domanda delle stazioni Platinum, l’archetipo per il quale valori di riferimento sono disponibili. Il modello dei veicoli proposto non fornisce per il momento risultati soddisfacenti, sovrastimando del 15.9% la domanda nazionale per la trazione. Pertanto, ulteriori approfondimenti sono consigliati. In futuro è prevista un'implementazione in RAMP del modello di trazione. Questo modello integrato consentirà di estendere l'analisi energetica all'intero settore ferroviario fornendo uno strumento per la decarbonizzazione del settore dei trasporti, estendibile anche in altri Paesi.
Bottom-up modelling of the italian railway system: energy demand simulation of stations and trains for decarbonisation scenarios
Della Valle, Nicholas
2022/2023
Abstract
The transport sector is responsible for about a quarter of global emissions. Road transport, still largely dependent on fossil fuels, is the main contributor to this share. On the other hand, the railway sector exhibits a high degree of electrification, representing a viable alternative for the decarbonisation of transport. In this context, a bottom-up model for the estimation of Italian railway energy demand is presented. The energy demand of Italian stations, classified into four archetypes (Platinum, Gold, Silver and Bronze) according to size and type of passenger services, is simulated using RAMP, an open-source energy model that provides a demand curve through a stochastic approach. In addition, a deterministic bottom-up model based on the Davis equation is presented to estimate the energy demand of Italian rolling stock, divided into conventional and high-speed. To validate its accuracy, the traction model is applied to a real route in southern Italy, obtaining an error of 6.22%. Then, through a sensitivity analysis, the factors that most influence the energy consumption of vehicles are identified: line slope, mass, and vehicle speed. Finally, two scenarios on the development of high-speed trains in Italy and their impact on national energy consumption are analysed. The proposed station model underestimates the energy demand of Platinum stations, the archetype for which reference values are available, by 3%. The proposed vehicle model does not yet give satisfactory results, overestimating the energy demand of Italian rolling stock by 15.9%. Further developments are therefore recommended. A future implementation of the traction demand model in RAMP is planned. The integrated model will provide a tool for the overall estimation of railway energy demand, providing an instrument for the decarbonisation of the transport sector, both in Italy and in other countries.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Della_Valle.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219092