Titan, the largest of Saturn's moons, has a thick atmosphere composed mainly of nitrogen and methane, with a thermal structure very similar to that of the Earth. This atmosphere is home to complex dynamics and photochemistry, with strong seasonal effects, particularly in the stratosphere. Space missions, and in particular the \textit{Cassini-Huygens} mission, that collected observations for around half a Titan-year, made major contributions to our understanding of the mechanisms governing Titan's atmosphere, as well as shedding light on seasonal phenomena. The many processes taking place in the atmosphere are closely interconnected: Global Circulation Models (GCMs), numerical models that simulate the atmosphere on a planetary scale, are precious tools for gaining a deeper understanding of these interactions. The IPSL Titan Planetary Climate Model (Titan PCM), a model dedicated to the study of Titan's atmosphere and existing prior to this work, suffers, in its current configuration, from problems in representing the stratospheric thermal structure, and from the absence of a stratopause. In this thesis, modifications are made to this model, in particular to the optical properties of the haze and aerosols (density, extinction, albedo) in order to improve the thermal structure. Various couplings are tested in order to study the impact of haze and gas distribution, and to understand their respective roles within the atmospheric system. This comparison highlights the important role of haze, particularly the representation of the detached haze layer in the model, in the definition of the stratopause. The reversal of the circulation at high latitudes is also investigated. Observations have shown the presence of specific phenomena, in particular a cooling of the upper stratosphere that current models have difficulty reproducing, as well as a temperature inversion in the lower stratosphere (or polar shoulder). The mechanisms behind this cooling are studied, pointing to the strong accumulation of compounds at the winter pole. A detailed investigation of the formation and evolution of the polar shoulder is also carried out, by compiling observations taken by the \textit{Cassini} mission and comparing them with results from the Titan PCM. A dynamic origin is put forward for this phenomenon, the intensity of which is influenced by haze and gas distribution.
Titano, la più grande delle lune di Saturno, ha una densa atmosfera composta principalmente da azoto e metano, e ha una struttura termica molto simile a quella della Terra. Questa atmosfera ospita una dinamica e fotochimica complesse, caratterizzate da forti effetti stagionali, soprattutto nella stratosfera. Le missioni spaziali, e in particolare la missione Cassini-Huygens, che ha raccolto osservazioni durante circa mezzo anno titanico, hanno fatto molto per la comprensione dei meccanismi dell’atmosfera di Titano e per mettere in luce fenomeni stagionali. I numerosi processi nell’atmosfera sono strettamente connessi: i Modelli di Circolazione Globale (GCMs), modelli numerici che permettono di simulare l’atmosfera a scala planetaria, sono strumenti preziosi per approfondire la conoscenza di queste interazioni. Il Modello Climatico Planetario (Titan PCM) dall’IPSL, modello dedicato allo studio dell’atmosfera di Titano ed esistente prima di questo lavoro, soffre, nella sua configurazione attuale, di problemi di rappresentazione della struttura termica stratosferica, e dell’assenza di stratopausa. In questa tesi si apportano modifiche a questo modello, in particolare alle proprietà ottiche delle nebbie (densità, estinzione, albedo) per migliorare la struttura termica dell’atmosfera. Vengono testati diversi accoppiamenti per studiare l’impatto dei gas e delle nebbie e per comprendere i loro rispettivi ruoli all’interno del sistema atmosferico. Questo confronto evidenzia l’importante ruolo della nebbia, in particolare della rappresentazione dello strato di nebbia distaccato, nella definizione della stratopausa. Viene inoltre studiata l’inversione della circolazione alle alte latitudini. Le osservazioni hanno mostrato la presenza di fenomeni specifici, in particolare un raffreddamento dell’alta stratosfera, che i modelli attuali hanno difficoltà a riprodurre, ma anche un’inversione di temperatura nella bassa stratosfera. I meccanismi responsabili di questo raffreddamento vengono studiati e indicano un legame con il forte accumulo di sostanze chimiche al polo invernale. La formazione e l’evoluzione dell’inversione di temperatura è studiata, compilando le osservazioni effettuate dalla missione Cassini e confrontandole con i risultati del Titan PCM. Si ipotizza un’origine dinamica del fenomeno, la cui intensità è influenzata dalla nebbia e dalla distribuzione dei gas.
Numerical modeling of Titan's stratosphere: impact of coupling on the thermal structure and seasonal variations
Rosset, Lucie Marie
2022/2023
Abstract
Titan, the largest of Saturn's moons, has a thick atmosphere composed mainly of nitrogen and methane, with a thermal structure very similar to that of the Earth. This atmosphere is home to complex dynamics and photochemistry, with strong seasonal effects, particularly in the stratosphere. Space missions, and in particular the \textit{Cassini-Huygens} mission, that collected observations for around half a Titan-year, made major contributions to our understanding of the mechanisms governing Titan's atmosphere, as well as shedding light on seasonal phenomena. The many processes taking place in the atmosphere are closely interconnected: Global Circulation Models (GCMs), numerical models that simulate the atmosphere on a planetary scale, are precious tools for gaining a deeper understanding of these interactions. The IPSL Titan Planetary Climate Model (Titan PCM), a model dedicated to the study of Titan's atmosphere and existing prior to this work, suffers, in its current configuration, from problems in representing the stratospheric thermal structure, and from the absence of a stratopause. In this thesis, modifications are made to this model, in particular to the optical properties of the haze and aerosols (density, extinction, albedo) in order to improve the thermal structure. Various couplings are tested in order to study the impact of haze and gas distribution, and to understand their respective roles within the atmospheric system. This comparison highlights the important role of haze, particularly the representation of the detached haze layer in the model, in the definition of the stratopause. The reversal of the circulation at high latitudes is also investigated. Observations have shown the presence of specific phenomena, in particular a cooling of the upper stratosphere that current models have difficulty reproducing, as well as a temperature inversion in the lower stratosphere (or polar shoulder). The mechanisms behind this cooling are studied, pointing to the strong accumulation of compounds at the winter pole. A detailed investigation of the formation and evolution of the polar shoulder is also carried out, by compiling observations taken by the \textit{Cassini} mission and comparing them with results from the Titan PCM. A dynamic origin is put forward for this phenomenon, the intensity of which is influenced by haze and gas distribution.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Rosset_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
30.77 MB
Formato
Adobe PDF
|
30.77 MB | Adobe PDF | Visualizza/Apri |
2024_04_Rosset_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Executive summary text
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219109