This research explores alternatives to the current algorithm, called Baseline, for electricity consumption prediction in Göteborg, in collaboration with the energy company Göteborg Energi (GE). Various Machine Learning (ML) models were assessed, resulting in two categories of algorithms, which we denoted as Recursive and Per-hour. The study evaluates their accuracy and peak consumption prediction capabilities, crucial due to grid congestion during winter peaks. The goal is to develop an improved predictive model focusing on peak consumption periods, comparing alternatives to the Baseline algorithm. Supervised ML algorithms were chosen because either the input and the desired output value were available. The study, supervised by a GE collaborator, draws from literature highlighting ML models’ strengths, such as Linear Regression for establishing relationships and Random Forest (RF) for handling complex data. Recent studies show promise for RF in electricity load forecasting. Evaluation against the Baseline confirms improved accuracy with ML models, especially Gradient Boosting (GB) and RF. Both consistently outperform the Baseline in peak prediction across various metrics. Longer training periods yield slightly better performance, capturing more data trends. These two models show superior predictive accuracy, indicating potential for implementation in GE.

Questa ricerca esplora alternative all’algoritmo attuale, chiamato Baseline, per la previsione del consumo di elettricità a Göteborg, in collaborazione con l’azienda energetica Göteborg Energi (GE). Sono stati valutati vari modelli di Machine Learning (ML), che hanno portato a due categorie di algoritmi, che abbiamo denominato Recursive e Per-hour. Lo studio valuta la loro accuratezza e le capacità di previsione dei picchi di consumo, cruciali a causa della congestione della rete durante i picchi invernali. L’obiettivo è sviluppare un modello predittivo migliorato concentrandosi sui periodi di picco di consumo, confrontando alternative all’algoritmo Baseline. Gli algoritmi di ML supervisionati sono stati scelti perché sia le variabili di input, che il valore degli output desiderati, erano disponibili. Lo studio, supervisionato da un collaboratore di GE, trae ispirazione dalla letteratura che evidenzia i punti di forza dei modelli di ML, come la Regressione Lineare per stabilire relazioni e il Random Forest (RF) per gestire dati complessi. Studi recenti mostrano promesse per il RF nella previsione del consumo di elettricità. La valutazione rispetto la Baseline conferma un’accuratezza migliorata con i modelli di ML, in particolare Gradient Boosting (GB) e RF. Entrambi superano costantemente la Baseline nella previsione dei picchi secondo varie metriche. Periodi di addestramento più lunghi producono performance leggermente migliori, catturando più tendenze dei dati. Questi due modelli mostrano una maggiore accuratezza predittiva, indicando potenziale per l’implementazione a GE.

Empirical assessment of energy consumption forecast techniques for Göteborg energi

SCACCABAROZZI, MATTEO
2023/2024

Abstract

This research explores alternatives to the current algorithm, called Baseline, for electricity consumption prediction in Göteborg, in collaboration with the energy company Göteborg Energi (GE). Various Machine Learning (ML) models were assessed, resulting in two categories of algorithms, which we denoted as Recursive and Per-hour. The study evaluates their accuracy and peak consumption prediction capabilities, crucial due to grid congestion during winter peaks. The goal is to develop an improved predictive model focusing on peak consumption periods, comparing alternatives to the Baseline algorithm. Supervised ML algorithms were chosen because either the input and the desired output value were available. The study, supervised by a GE collaborator, draws from literature highlighting ML models’ strengths, such as Linear Regression for establishing relationships and Random Forest (RF) for handling complex data. Recent studies show promise for RF in electricity load forecasting. Evaluation against the Baseline confirms improved accuracy with ML models, especially Gradient Boosting (GB) and RF. Both consistently outperform the Baseline in peak prediction across various metrics. Longer training periods yield slightly better performance, capturing more data trends. These two models show superior predictive accuracy, indicating potential for implementation in GE.
GULISANO, VINCENZO
ING - Scuola di Ingegneria Industriale e dell'Informazione
9-apr-2024
2023/2024
Questa ricerca esplora alternative all’algoritmo attuale, chiamato Baseline, per la previsione del consumo di elettricità a Göteborg, in collaborazione con l’azienda energetica Göteborg Energi (GE). Sono stati valutati vari modelli di Machine Learning (ML), che hanno portato a due categorie di algoritmi, che abbiamo denominato Recursive e Per-hour. Lo studio valuta la loro accuratezza e le capacità di previsione dei picchi di consumo, cruciali a causa della congestione della rete durante i picchi invernali. L’obiettivo è sviluppare un modello predittivo migliorato concentrandosi sui periodi di picco di consumo, confrontando alternative all’algoritmo Baseline. Gli algoritmi di ML supervisionati sono stati scelti perché sia le variabili di input, che il valore degli output desiderati, erano disponibili. Lo studio, supervisionato da un collaboratore di GE, trae ispirazione dalla letteratura che evidenzia i punti di forza dei modelli di ML, come la Regressione Lineare per stabilire relazioni e il Random Forest (RF) per gestire dati complessi. Studi recenti mostrano promesse per il RF nella previsione del consumo di elettricità. La valutazione rispetto la Baseline conferma un’accuratezza migliorata con i modelli di ML, in particolare Gradient Boosting (GB) e RF. Entrambi superano costantemente la Baseline nella previsione dei picchi secondo varie metriche. Periodi di addestramento più lunghi producono performance leggermente migliori, catturando più tendenze dei dati. Questi due modelli mostrano una maggiore accuratezza predittiva, indicando potenziale per l’implementazione a GE.
File allegati
File Dimensione Formato  
Executive_Summary_Scaccabarozzi_Matteo.pdf

accessibile in internet per tutti

Descrizione: Executive Summary
Dimensione 331.42 kB
Formato Adobe PDF
331.42 kB Adobe PDF Visualizza/Apri
Master_Thesis___GE_forecasting_Scaccabarozzi_Matteo.pdf

accessibile in internet per tutti

Descrizione: Thesis
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/219162