One of the present challenges the world is struggling with is the shortage of water. The scarcity of water requires the adoption of sustainable water management practices, particularly in the agricultural industry, which accounts for the highest water usage. Consequently, there is a crucial need to transition towards sustainable development in the management of water resources within the agricultural sector. Inefficient utilization of water consumption leads to various issues, including environmental, social, and economic concerns, ultimately contributing to drought especially in water-deficient regions. The prevalence of new technologies in different areas of engineering can result in finding novel solutions, leading to more reliable and sustainable systems. The rampant expansion of satellites prompted the broad utilization of remote sensing in recent years. Remote sensing can be applied to monitor and manage the ecosystem area of interest. In this thesis, remote sensing data of land surface temperature (LST) alongside an energy-water balance model were used to ameliorate the soil moisture and evapotranspiration estimates over time and space. The energy and water balance scheme, known as FEST-EWB model (flash flood even-based spatially distributed rainfall-runoff transformation-energy water balance model) is capable of estimating soil moisture and evapotranspiration via acquiring the satellite data as inputs of the model, as well as fractional vegetation of cover (FVC). Furthermore, it uses these data as variables in updating Land Surface Temperature (LST). The energy budget is solved by looking for representative equilibrium temperature (RET) which is (LST) that closes the energy balance. To examine the performance of the model, an eddy covariance system was installed in 13 cultivated fields stations to compare the generated outputs of FEST-EWB model with the observed data. In this direction, soil moisture (SM) and latent heat (LE) were investigated thoroughly in the case study of Capitanata Consortium. Additionally, irrigation outputs from the FEST-EWB model were compared with observed data. Finally, the results were discussed to evaluate the limitations of the model, including the low spatial resolution of satellite Sentinel-1 data.
Una delle sfide attuali con cui il mondo sta lottando è la carenza d’acqua. La scarsità d’acqua richiede l’adozione di pratiche di gestione idrica sostenibili, in particolare nel settore agricolo, che rappresenta il maggiore utilizzo di acqua. Di conseguenza, esiste una necessità cruciale di transizione verso lo sviluppo sostenibile nella gestione delle risorse idriche nel settore agricolo. L’utilizzo inefficiente del consumo idrico porta a vari problemi, tra cui preoccupazioni ambientali, sociali ed economiche, contribuendo in ultima analisi alla siccità, soprattutto nelle regioni carenti d’acqua. La prevalenza di nuove tecnologie in diversi settori dell’ingegneria può portare alla ricerca di nuove soluzioni, portando a sistemi più affidabili e sostenibili. La dilagante espansione dei satelliti ha portato negli ultimi anni ad un ampio utilizzo del telerilevamento. Il telerilevamento può essere applicato per monitorare e gestire l'area di interesse dell'ecosistema. In questa tesi, i dati di telerilevamento della temperatura della superficie terrestre (LST) insieme a un modello di bilancio energetico-acqua sono stati utilizzati per migliorare le stime di umidità del suolo ed evapotraspirazione nel tempo e nello spazio. Lo schema di bilancio energetico e idrico, noto come modello FEST-EWB (flash Flood Even-Based Spacely Distributed Rain-Drusation Transformation-Energy Water Balance Model) è in grado di stimare l'umidità del suolo e l'evapotraspirazione acquisendo i dati satellitari come input del modello, così come la vegetazione frazionata di copertura (FVC). Inoltre, utilizza questi dati come variabili nell'aggiornamento della temperatura della superficie terrestre (LST). Il bilancio energetico viene risolto cercando la temperatura di equilibrio rappresentativa (RET) che è (LST) che chiude il bilancio energetico. Per esaminare le prestazioni del modello, un sistema di covarianza vorticosa è stato installato in 13 stazioni di campi coltivati per confrontare i risultati generati dal modello FEST-EWB con i dati osservati. In questa direzione, l’umidità del suolo (SM) e il calore latente (LE) sono stati studiati approfonditamente nel caso studio del Consorzio della Capitanata. Inoltre, i risultati dell’irrigazione del modello FEST-EWB sono stati confrontati con i dati osservati. Infine, i risultati sono stati discussi per valutare i limiti del modello, inclusa la bassa risoluzione spaziale dei dati del satellite Sentinel-1.
Remotely sensed soil moisture and a hydrological model for evapotranspiration estimate
Monadi, Seyed Kamran
2022/2023
Abstract
One of the present challenges the world is struggling with is the shortage of water. The scarcity of water requires the adoption of sustainable water management practices, particularly in the agricultural industry, which accounts for the highest water usage. Consequently, there is a crucial need to transition towards sustainable development in the management of water resources within the agricultural sector. Inefficient utilization of water consumption leads to various issues, including environmental, social, and economic concerns, ultimately contributing to drought especially in water-deficient regions. The prevalence of new technologies in different areas of engineering can result in finding novel solutions, leading to more reliable and sustainable systems. The rampant expansion of satellites prompted the broad utilization of remote sensing in recent years. Remote sensing can be applied to monitor and manage the ecosystem area of interest. In this thesis, remote sensing data of land surface temperature (LST) alongside an energy-water balance model were used to ameliorate the soil moisture and evapotranspiration estimates over time and space. The energy and water balance scheme, known as FEST-EWB model (flash flood even-based spatially distributed rainfall-runoff transformation-energy water balance model) is capable of estimating soil moisture and evapotranspiration via acquiring the satellite data as inputs of the model, as well as fractional vegetation of cover (FVC). Furthermore, it uses these data as variables in updating Land Surface Temperature (LST). The energy budget is solved by looking for representative equilibrium temperature (RET) which is (LST) that closes the energy balance. To examine the performance of the model, an eddy covariance system was installed in 13 cultivated fields stations to compare the generated outputs of FEST-EWB model with the observed data. In this direction, soil moisture (SM) and latent heat (LE) were investigated thoroughly in the case study of Capitanata Consortium. Additionally, irrigation outputs from the FEST-EWB model were compared with observed data. Finally, the results were discussed to evaluate the limitations of the model, including the low spatial resolution of satellite Sentinel-1 data.File | Dimensione | Formato | |
---|---|---|---|
Thesis-seyed kamran monadi.pdf
accessibile in internet per tutti
Dimensione
5.22 MB
Formato
Adobe PDF
|
5.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219250