Idiopathic Pulmonary Fibrosis (IPF), among interstitial idiopathic pneumonias, is distinguished by an unpredictable development, rapid progression and occasional acute worsening exacerbations leading to organ failure and mortality. This study aims to develop a Lung-on-a-chip model to provide a robust in vitro tool investigating IPF. In particular, Lung-on-a-chip is applied to the investigation of two specific cellular compartments involved in IPF pathophysiology, namely stromal and epithelial components, exploring the effect of suitable chemical and mechanical stimulations on them. To accurately replicate the intricate 3D relationship between the pulmonary extracellular matrix (ECM) and normal human lung fibroblasts (NHLFs) and to investigate how ECM alteration may drive IPF traits in NHLFs, cell-laden 3D hydrogels are employed. Different hydrogels in different concentrations, including fibrin and GelMA hydrogels, are examined to study cell responses to tissue biomechanical changes with a particular focus on those promoting fibroblast-to-myofibroblast transition, a hallmark process of IPF. Furthermore, the effect of different materials (e.g. collagen type I and gelatin coatings) is examined in guiding alveolar epithelial monolayer formation and its pathological epithelial-to-mesenchymal transition, starting from adenocarcinomic human alveolar basal epithelial cells (A549 cells) as a simplified model. Moreover, considering that in vivo lungs undergo cyclic tensile stretching during respiration cycles, the effect a pathological mechanical stimulation at 1 Hz and 10% of strain on both cell phenotype is evaluated. In addition, the effect of a cyclic compression stress is evaluated on fibroblasts: while this mechanical stimulus is not found in healthy lung tissues, IPF onset leads to a stiffening of the ECM, eventually resulting in ECM-embedded fibroblast to be subjected to compression. In this study, a novel Lung-on-a-chip model served as an in vitro platform for IPF exploration and drug screening, aiding in the treatment and/or prevention of disease progression.
La fibrosi polmonare idiopatica (IPF), tra le polmoniti interstiziali idiopatiche, si distingue per uno sviluppo imprevedibile, una rapida progressione e occasionali esacerbazioni acute che portano a insufficienza d'organo e mortalità. Questo studio mira a sviluppare un modello Lung-on-a-chip per fornire uno strumento robusto in vitro per lo studio dell'IPF. In particolare, il Lung-on-a-chip viene applicato allo studio di due specifici compartimenti cellulari coinvolti nella fisiopatologia dell'IPF, ovvero la componente stromale e quella epiteliale, esplorando l'effetto di opportune stimolazioni chimiche e meccaniche su di essi. Per replicare accuratamente l'intricata relazione tridimensionale tra la matrice extracellulare polmonare (ECM) e i fibroblasti polmonari umani normali (NHLF) e per studiare come l'alterazione dell'ECM possa determinare le caratteristiche dell'IPF negli NHLF, sono stati impiegati idrogeli 3D carichi di cellule. Sono stati esaminati diversi idrogeli in diverse concentrazioni, tra cui idrogeli di fibrina e GelMA, per studiare le risposte delle cellule ai cambiamenti biomeccanici del tessuto, con particolare attenzione a quelli che promuovono la transizione da fibroblasti a miofibroblasti, un processo caratteristico dell'IPF. Inoltre, viene esaminato l'effetto di diversi materiali (ad esempio, collagene di tipo I e rivestimenti di gelatina) nel guidare la formazione di monostrati epiteliali alveolari e la loro transizione patologica da epiteliale a mesenchimale, partendo da cellule epiteliali basali alveolari umane adenocarcinomiche (cellule A549) come modello semplificato. Inoltre, considerando che in vivo i polmoni subiscono uno stiramento ciclico durante i cicli di respirazione, viene valutato l'effetto di uno stimolo meccanico patologico a 1 Hz e al 10% di deformazione su entrambi i fenotipi cellulari. Inoltre, è stato valutato l'effetto di una sollecitazione di compressione ciclica sui fibroblasti: mentre questo stimolo meccanico non è presente nei tessuti polmonari sani, l'insorgenza dell'IPF porta a un irrigidimento della ECM, che alla fine porta i fibroblasti incorporati nella ECM a essere sottoposti a compressione. In questo studio, un nuovo modello Lung-on-a-chip è servito come piattaforma in vitro per l'esplorazione dell'IPF e lo screening dei farmaci, contribuendo al trattamento e/o alla prevenzione della progressione della malattia.
Development of a lung-on-a-chip model to investigate the effect of chemical and mechanical stimulations on epithelial and stromal compartments in idiopathic pulmonary fibrosis
AMODIO, LUISA
2023/2024
Abstract
Idiopathic Pulmonary Fibrosis (IPF), among interstitial idiopathic pneumonias, is distinguished by an unpredictable development, rapid progression and occasional acute worsening exacerbations leading to organ failure and mortality. This study aims to develop a Lung-on-a-chip model to provide a robust in vitro tool investigating IPF. In particular, Lung-on-a-chip is applied to the investigation of two specific cellular compartments involved in IPF pathophysiology, namely stromal and epithelial components, exploring the effect of suitable chemical and mechanical stimulations on them. To accurately replicate the intricate 3D relationship between the pulmonary extracellular matrix (ECM) and normal human lung fibroblasts (NHLFs) and to investigate how ECM alteration may drive IPF traits in NHLFs, cell-laden 3D hydrogels are employed. Different hydrogels in different concentrations, including fibrin and GelMA hydrogels, are examined to study cell responses to tissue biomechanical changes with a particular focus on those promoting fibroblast-to-myofibroblast transition, a hallmark process of IPF. Furthermore, the effect of different materials (e.g. collagen type I and gelatin coatings) is examined in guiding alveolar epithelial monolayer formation and its pathological epithelial-to-mesenchymal transition, starting from adenocarcinomic human alveolar basal epithelial cells (A549 cells) as a simplified model. Moreover, considering that in vivo lungs undergo cyclic tensile stretching during respiration cycles, the effect a pathological mechanical stimulation at 1 Hz and 10% of strain on both cell phenotype is evaluated. In addition, the effect of a cyclic compression stress is evaluated on fibroblasts: while this mechanical stimulus is not found in healthy lung tissues, IPF onset leads to a stiffening of the ECM, eventually resulting in ECM-embedded fibroblast to be subjected to compression. In this study, a novel Lung-on-a-chip model served as an in vitro platform for IPF exploration and drug screening, aiding in the treatment and/or prevention of disease progression.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Amodio_01.pdf
non accessibile
Descrizione: Thesis
Dimensione
6.54 MB
Formato
Adobe PDF
|
6.54 MB | Adobe PDF | Visualizza/Apri |
2024_04_Amodio_02.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.34 MB
Formato
Adobe PDF
|
1.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219300