The identification of volatile organic compounds (VOCs) in patients breath represents a promising tool for clinical diagnosis, and disease monitoring. Breath analysis’ non-invasive nature of has led to its diagnostic application in lung diseases such as asthma and chronic obstructive pulmonary disease. Gas chromatography-mass spectrometry is the most widely used methods for analyzing VOCs. However, its high operating cost and the complexity of the machinery, more compact chemical sensors and portable devices, i.e., electronic noses, have started to be investigated in recent years. This thesis project focused on developing stable and reproducible chemiresistive sensors for VOCs detection, based on a conductive polymeric film deposited on gold interdigitated electrodes (IDE). Repeated tests were carried out on the same units and on different units to assess their performances. A reproducibility index (RI) was specifically identified to give a quantitative evaluation on the quality of sensors responses. Two main types of sensors were tested and characterized: polyvinylpyrrolidone (PVP)-based and molecularly imprinted polymer (MIP)-based chemiresistives. In both cases the polymers were mixed with multiwalled carbon nanotubes (MWCNTs) to allow resistance, proportional to the VOCs absorbed by the polymer, to be measured. For PVP-based sensors, the polymer-to-MWCNTs ratio and the amount of material to be deposited on the IDE were optimized. The effect of the polymer’s molecular weight on the sensor performance was evaluated. In MIP-based sensors, MIP matrices were designed to recognize and bind to specific VOCs with high selectivity and affinity. A template VOC that serves as a mold during the polymerization process, was used to form specific binding sites complementary in shape, size, and chemical functionality to the template molecule. For MIP-based sensors, an investigation was conducted to examine the effect the composition of the reacting mixture, the adhesion of the matrix to the IDE, and temperature had on sensor performance. The most promising formulations and manufacturing protocols have been identified for future development.
L'identificazione dei composti organici volatili (VOCs) nel respirato rappresenta uno strumento promettente per la diagnosi clinica e il monitoraggio della malattia. La natura non invasiva dell'analisi del respiro ha portato alla sua applicazione diagnostica in malattie polmonari come l'asma e la broncopneumopatia cronica ostruttiva. La gascromatografia-spettrometria di massa è il metodo più utilizzato per analizzare i VOCs. L'elevato costo operativo e della complessità dei macchinari, però ha portato allo studio di sensori chimici più compatti e dispositivi portatili (i.e. nasi elettronici). Questo progetto di tesi si è concentrato sullo sviluppo di sensori chemioresistivi stabili e riproducibili per la rilevazione di VOCs, basati su un film polimerico conduttivo depositato su elettrodi interdigitati (IDE) in oro. Sono stati eseguiti test ripetuti sulle stesse unità e su unità diverse per valutarne le prestazioni. È stato identificato un indice di riproducibilità (RI) per fornire una valutazione quantitativa della qualità delle risposte dei sensori. Sono stati caratterizzati due tipi principali di sensori: quelli a base di polivinilpirrolidone (PVP) e quelli a base di polimeri a impronta molecolare (MIP). In entrambi i casi, i polimeri sono stati mescolati con nanotubi di carbonio a parete multipla (MWCNTs) per consentire la misurazione della resistenza proporzionale al VOC assorbito dal polimero. Per i sensori basati sul PVP, sono stati ottimizzati il rapporto polimero-MWCNTs, la quantità di materiale da depositare sull'IDE e l'effetto del peso molecolare del polimero sulle prestazioni del sensore è stato valutato. Nei sensori basati su MIP, le matrici MIP sono state progettate per riconoscere e legarsi a specifici VOC con elevata selettività e affinità. Un VOC modello, che funge da stampo durante il processo di polimerizzazione, è stato utilizzato per formare siti di legame specifici complementari per forma, dimensione e funzionalità chimica alla molecola modello. Per i sensori basati su MIP, è stata condotta un'indagine per esaminare l'effetto della composizione della miscela reagente, dell'adesione della matrice all'IDE e della temperatura sulle prestazioni del sensore. Le formulazioni e i protocolli di produzione più promettenti sono stati identificati per lo sviluppo futuro.
Designing chemiresistive biosensors for detecting volatile organic compounds using conductive molecularly imprinted polymers
CARDUCCI AGOSTINI, GIULIA
2022/2023
Abstract
The identification of volatile organic compounds (VOCs) in patients breath represents a promising tool for clinical diagnosis, and disease monitoring. Breath analysis’ non-invasive nature of has led to its diagnostic application in lung diseases such as asthma and chronic obstructive pulmonary disease. Gas chromatography-mass spectrometry is the most widely used methods for analyzing VOCs. However, its high operating cost and the complexity of the machinery, more compact chemical sensors and portable devices, i.e., electronic noses, have started to be investigated in recent years. This thesis project focused on developing stable and reproducible chemiresistive sensors for VOCs detection, based on a conductive polymeric film deposited on gold interdigitated electrodes (IDE). Repeated tests were carried out on the same units and on different units to assess their performances. A reproducibility index (RI) was specifically identified to give a quantitative evaluation on the quality of sensors responses. Two main types of sensors were tested and characterized: polyvinylpyrrolidone (PVP)-based and molecularly imprinted polymer (MIP)-based chemiresistives. In both cases the polymers were mixed with multiwalled carbon nanotubes (MWCNTs) to allow resistance, proportional to the VOCs absorbed by the polymer, to be measured. For PVP-based sensors, the polymer-to-MWCNTs ratio and the amount of material to be deposited on the IDE were optimized. The effect of the polymer’s molecular weight on the sensor performance was evaluated. In MIP-based sensors, MIP matrices were designed to recognize and bind to specific VOCs with high selectivity and affinity. A template VOC that serves as a mold during the polymerization process, was used to form specific binding sites complementary in shape, size, and chemical functionality to the template molecule. For MIP-based sensors, an investigation was conducted to examine the effect the composition of the reacting mixture, the adhesion of the matrix to the IDE, and temperature had on sensor performance. The most promising formulations and manufacturing protocols have been identified for future development.File | Dimensione | Formato | |
---|---|---|---|
2024_4_CarducciAgostini_Tesi_01.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
4.55 MB
Formato
Adobe PDF
|
4.55 MB | Adobe PDF | Visualizza/Apri |
2024_4_CarducciAgostini_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
952.9 kB
Formato
Adobe PDF
|
952.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219336