This thesis is the first step toward the design of a new active flow control device with the aid of Artificial Intelligence (AI). A methodology was investigated for applying Machine Learning (ML) to predict the aerodynamic performances of a Sweeping Jet (SJ), which was applied to a 2D vertical tail section (NACA 0012) of an airplane, at the hinge of the rudder, to enhance the tail aerodynamic effectiveness. The flow field around the airfoil was studied with Computational Fluid Dynamics (CFD) at Reynolds’ number (Re) 15 million and Mach number (M) 0.15. The model was simulated at sideslip angles β of 0°, 5°, 10° and at rudder deflections δ of 0°, 10° and 20°. The SJ velocity was modelled by a square wave function of different frequencies f (50,100,150 Hz) and maximum ejected velocities v_MAX (0,10,25,50,75,100 m/s). The SJ action was successful in avoiding separation on the movable surface, provided sufficient momentum was injected on it. CFD aerodynamic coefficients were exploited to train a feed-forward neural network of one level of 10 neurons, 4 inputs (β, δ, v_MAX,f) and 3 outputs (Cl,Cd,Cm). The network outputs were able to correctly predict the target CFD outputs. Moreover, the Neural Network was employed to obtain a sideforce enhancement of 20%, for β from 0° to 10° and for δ from 10° to 20°, by keeping fixed f (100 Hz), Re (15 million) and M (0.15). The successful demonstration of this machine learning methodology was confirmed by the small amount of time and by the low computational effort in providing aerodynamic coefficients, once the network was properly trained.
Questo lavoro di tesi è il passo iniziale verso la progettazione di un nuovo dispositivo per controllare attivamente il flusso con il supporto dell’intelligenza artificiale. È stata esplorata una metodologia per applicare il machine learning alla previsione delle prestazioni aerodinamiche di un Getto Oscillante (GO) nello spazio, applicato a una sezione 2D (NACA 0012) di una superficie verticale di coda, alla cerniera del timone, in modo da aumentare l’efficacia aerodinamica della superficie di coda. Il flusso d’aria attorno al profilo è stato studiato con la Fluidodinamica-Computazionale (CFD) a numeri di Reynolds (Re) di 15 milioni e numeri di Mach (M) di 0.15. Il modello è stato simulato ad angoli di incidenza laterale β di 0°, 5°, 10° e a deflessioni del timone δ di 0°, 10° e 20°. Le velocità del GO sono state modellate da onde quadra di diverse frequenze f (50,100,150 Hz) e velocità massime di efflusso v_MAX (0,10,25,50,75,100 m/s). La azione del GO si è dimostrata efficace nel prevenire la separazione sulla superfice mobile, a condizione di fornire sufficiente quantità di moto al flusso su di essa. I coefficienti aerodinamici calcolati dalla CFD sono stati impiegati nel training di una rete neurale feed-forward di un livello di 10 neuroni, 4 inputs (β, δ, v_MAX,f) e 3 outputs (Cl,Cd,Cm). Gli outputs della rete hanno predetto correttamente gli outputs target calcolati con la. Inoltre, la Rete Neurale è stata sfruttata per ottenere un incremento della forza laterale pari al 20%, per valori di β da 0° a 10° e di δ da 10° a 20°, mantenendo fissati i valori di f (100 Hz), Re (15 milioni) and M (0.15). Il buon esito e l’efficacia di questa metodologia basata sul machine learning sono stati confermati dalla ridotta quantità di tempo e dal basso costo computazionale con cui sono stati forniti i coefficienti aerodinamici, una volta che la rete neurale è stata allenata in modo consono.
A machine learning methodology to predict the aerodynamic performances of an active flow control system on a 2D airfoil
Cordoni, Carlo
2023/2024
Abstract
This thesis is the first step toward the design of a new active flow control device with the aid of Artificial Intelligence (AI). A methodology was investigated for applying Machine Learning (ML) to predict the aerodynamic performances of a Sweeping Jet (SJ), which was applied to a 2D vertical tail section (NACA 0012) of an airplane, at the hinge of the rudder, to enhance the tail aerodynamic effectiveness. The flow field around the airfoil was studied with Computational Fluid Dynamics (CFD) at Reynolds’ number (Re) 15 million and Mach number (M) 0.15. The model was simulated at sideslip angles β of 0°, 5°, 10° and at rudder deflections δ of 0°, 10° and 20°. The SJ velocity was modelled by a square wave function of different frequencies f (50,100,150 Hz) and maximum ejected velocities v_MAX (0,10,25,50,75,100 m/s). The SJ action was successful in avoiding separation on the movable surface, provided sufficient momentum was injected on it. CFD aerodynamic coefficients were exploited to train a feed-forward neural network of one level of 10 neurons, 4 inputs (β, δ, v_MAX,f) and 3 outputs (Cl,Cd,Cm). The network outputs were able to correctly predict the target CFD outputs. Moreover, the Neural Network was employed to obtain a sideforce enhancement of 20%, for β from 0° to 10° and for δ from 10° to 20°, by keeping fixed f (100 Hz), Re (15 million) and M (0.15). The successful demonstration of this machine learning methodology was confirmed by the small amount of time and by the low computational effort in providing aerodynamic coefficients, once the network was properly trained.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Cordoni_TESI_01.pdf
accessibile in internet per tutti
Descrizione: Tesi
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri |
2024_04_Cordoni_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219346