The study of aging in systems with multiple battery cells connection, called “modules”, used in automotive application, is one of the main research topics for lithium-ion batteries (LIB), especially for their subsequent use in second-life applications. In particular, it’s of primary importance the characterization of properties heterogeneity within the same groups of cells, connected in parallel and/or in series, and, also, for cells of larger dimensions. Therefore, an experimental methodology was developed and applied to the available LIB modules, aged under extensive real-world automotive applications, aiming at characterizing the variations in state of health (SOH) between its constituent cells. The modules were specifically selected from previous research activity, which highlighted their high heterogeneity, in performance parameters, between cells connected in parallel, justified by non-homogeneous operating conditions during lifetime. Specifically, considering cells parallel connections, the presented innovative methodology is based on the combination of thermal measurements, using both thermocouples and fiber Bragg gratings sensors (FBGs), the latter one characterized for being extremely sensible thermal sensors, with the creation of a simplified 0-D electro-thermal model. The model allows the estimation of current and resistance distribution along the cells parallels, obtained starting from cells temperature, measured during high power module operation. The modules were subsequently dismantled for methodology validation, testing individually its constitutive cells and demonstrating the consistent estimation of cells parameters heterogeneity.
L'analisi dell'invecchiamento in sistemi composti da connessioni multiple di batterie, chiamate "moduli", comunemente utilizzate in applicazioni automobilistiche, è uno dei principali campi di ricerca per batterie agli ioni di litio (LIB), specialmente per il loro uso in applicazioni di second-life. Comprendere l'eterogeneità delle proprietà all'interno di questi gruppi di celle è cruciale per l'analisi dello stato di salute (SOH) dei moduli, sia connessioni in parallelo che in serie, ed anche per celle di dimensioni maggiori. Pertanto, è stata sviluppata una metodologia sperimentale per caratterizzare le variazioni dello stato di salute (SOH) tra le celle costituenti i moduli LIB disponibili, precedentemente sottoposti a invecchiamento in condizioni reali di utilizzo. Per i moduli selezionati, considerando celle collegate in parallelo, hanno mostrato un'elevata eterogeneità basata sui valori dei diversi parametri prestazionali, attribuita a condizioni operative non uniformi durante il loro ciclo di vita. La metodologia innovativa combina misurazioni termiche, utilizzando termocoppie e fibre ottiche con sensori a griglia di Bragg (FBGs), quest'ultimi particolarmente sensibili alla temperatura, con un modello elettro-termico semplificato a 0-D. Questo modello stima la distribuzione di corrente e resistenza lungo le celle collegate in parallelo basandosi sulle misurazioni di temperatura durante il funzionamento ad alta potenza del modulo. Successivamente, i moduli sono stati smontati per la validazione della metodologia, con il test individuale delle celle costituenti che ha confermato la stima coerente dell'eterogeneità dei parametri delle celle.
Characterization of real-life heterogeneous aging within Lithium-Ion Battery modules through electro-thermal measurements and a lumped 0-D model
OTTOLINA, DAVIDE
2023/2024
Abstract
The study of aging in systems with multiple battery cells connection, called “modules”, used in automotive application, is one of the main research topics for lithium-ion batteries (LIB), especially for their subsequent use in second-life applications. In particular, it’s of primary importance the characterization of properties heterogeneity within the same groups of cells, connected in parallel and/or in series, and, also, for cells of larger dimensions. Therefore, an experimental methodology was developed and applied to the available LIB modules, aged under extensive real-world automotive applications, aiming at characterizing the variations in state of health (SOH) between its constituent cells. The modules were specifically selected from previous research activity, which highlighted their high heterogeneity, in performance parameters, between cells connected in parallel, justified by non-homogeneous operating conditions during lifetime. Specifically, considering cells parallel connections, the presented innovative methodology is based on the combination of thermal measurements, using both thermocouples and fiber Bragg gratings sensors (FBGs), the latter one characterized for being extremely sensible thermal sensors, with the creation of a simplified 0-D electro-thermal model. The model allows the estimation of current and resistance distribution along the cells parallels, obtained starting from cells temperature, measured during high power module operation. The modules were subsequently dismantled for methodology validation, testing individually its constitutive cells and demonstrating the consistent estimation of cells parameters heterogeneity.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Ottolina_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Characterization of real-life heterogeneous aging within Lithium-Ion Battery modules through electro-thermal measurements and a lumped 0-D model
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
2024_04_Ottolina_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: Characterization of real-life heterogeneous aging within Lithium-Ion Battery modules through electro-thermal measurements and a lumped 0-D model
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219542