Obesity is a growing worldwide issue. Excess adipose tissue contributes to chronic changes and diseases, including cardiovascular disorders, diabetes, lung disease, arthritis and cancer. This thesis project fits into this context by attempting to replicate the characteristics of a cancerous adipose tissue through a scaffold-based in vitro 3D model. In the latest advances in biomedical research, in vitro 3D models have gained importance as a cutting-edge technology to replicate the complexity of tissues, overcoming the limitations of traditional 2D models and reducing the need for animal testing. A major challenge in these models is the creation of a functional vascular network, which is critical for maintaining cell viability. In the vast landscape of available approaches and materials, an embedded printing (FRESH) approach, combining GelMA as support bath and Pluronic as sacrificial ink was selected. This approach aims to create a 3D model with a functional vascular network through the sacrificial removal of Pluronic filament inside the GelMA scaffold, to accurately replicate the tumor microenvironment, contributing to advances in understanding and potentially treating such conditions. The samples were subjected to various tests such as mechanical compression test, gel fraction test and in vitro stability test in order to characterize the model from the point of view of morphology, mechanics and in vitro stability in aqueous solution; and confirm their conformity to the mimicked tissue. A bioreactor was designed to perform dynamic culture on the fabricated samples. The geometry (two-channels geometry) chosen to simulate the vascular network within the model is not suitable for mimicking blood microcirculation, due to the larger size of the channels (d = 600 to 800 μm). The size of the channels positively affects fluid uptake within the entire scaffold as shown from the in vitro stability tests where the swelling is faster due to the presence of the channels; it is showed that it also makes the cross-linking of the material more efficient, compared with GelMA bulk and models with simpler integrated geometries. It can, moreover, be concluded how, compared to the bulk model, the channel does not affect the stability of the samples since they are both fully degraded at 21 days. Furthermore, the study showed that the elastic modulus and stiffness of hydrogel, respectively of 5,2 ± 0,8 kPa and 25,5 ± 2,1, were not able to mimic tumor adipose tissue but can mimic the mechanical properties of physiological adipose tissue. Accordingly, based on the results obtained, the 3D in vitro scaffold-based model shows potentiality for mimicking physiological adipose tissue, with the possibility of applying the designed bioreactor to simulate the in vivo microenvironment more accurately.
L'obesità costituisce una crescente problematica a livello mondiale. L'eccesso di tessuto adiposo concorre a provocare alterazioni croniche e malattie, inclusi disturbi cardiovascolari, diabete, patologie polmonari, artrite e tumori. Il presente progetto di tesi si inserisce in questo contesto cercando di replicare le caratteristiche di un tessuto adiposo tumorale, attraverso un modello in vitro 3D. I modelli 3D in vitro stanno assumendo un ruolo rilevante per replicare in modo più realistico la complessità dei tessuti, superando le limitazioni dei tradizionali modelli 2D e riducendo la necessità di test sugli animali. Una delle sfide principali in questi modelli è rappresentata dalla creazione di una rete vascolare funzionale, fondamentale per mantenere la vitalità cellulare risolvendo questioni legate all'approvvigionamento di ossigeno e nutrienti. Nel vasto panorama di approcci e materiali disponibili, nel presente lavoro di tesi è stato utilizzato un approccio di embedded printing (FRESH), combinando GelMA come materiale di supporto e Pluronic come inchiostro sacrificale. Questo approccio mira a realizzare un modello 3D con una rete vascolare funzionale che replichi il microambiente tumorale, contribuendo agli avanzamenti nella comprensione e potenzialmente nella cura di tali condizioni. I campioni del modello realizzato sono stati sottoposti a diverse prove al fine di caratterizzare il modello e per confrontarlo con un bulk di GelMA (BULK) e il modello della tesi precedente (ELICA). Sono state condotte prove meccaniche a compressione, prove di gel fraction e prove di variazione ponderale. In particolare, il modello 3D è stato caratterizzato dal punto di vista morfologico, meccanico e della stabilità in soluzione acquosa. Inoltre, è stato progettato un bioreattore nell’ottica futura di realizzare una cultura dinamica sui campioni realizzati. La geometria (due-canali) scelta per simulare la rete vascolare all’interno del modello non è adatta per mimare la microcircolazione sanguigna, a causa delle dimensioni maggiori dei canali realizzati (d = 600 – 800 μm). Le prove di variazione ponderale hanno dimostrato come la dimensione influisca positivamente sull’assorbimento di fluidi all’interno dello scaffold causando uno swelling più rapido in presenza dei canali; inoltre rende più efficiente la reticolazione del materiale, rispetto al bulk di sola GelMA e a modelli con geometrie più semplici integrate. Si può, inoltre, concludere come, sempre rispetto ad un bulk di GelMA, la presenza dei canali pervi non infici sulla stabilità dei campioni che degradano completamente dopo 21 giorni. Lo studio ha poi dimostrato che il modulo elastico e la rigidezza dell’idrogelo, rispettivamente pari a 5,2 ± 0,8 kPa and 25,5 ± 2,1, non sono stati in grado di mimare il tessuto adiposo tumorale, ma si mostrano invece conformi per mimare le proprietà meccaniche del tessuto adiposo fisiologico. Di conseguenza, in base ai risultati ottenuti, il modello 3D in vitro scaffold-based si presenta promettente per emulare il tessuto adiposo fisiologico, con la possibilità di applicare il bioreattore sviluppato per simulare in maniera più accurata il microambiente in vivo.
Sviluppo di un modello 3D scaffold-based in vitro del tessuto adiposo
MARRAS, MATTEO;LOMBARDO, CHIARA AGATA
2023/2024
Abstract
Obesity is a growing worldwide issue. Excess adipose tissue contributes to chronic changes and diseases, including cardiovascular disorders, diabetes, lung disease, arthritis and cancer. This thesis project fits into this context by attempting to replicate the characteristics of a cancerous adipose tissue through a scaffold-based in vitro 3D model. In the latest advances in biomedical research, in vitro 3D models have gained importance as a cutting-edge technology to replicate the complexity of tissues, overcoming the limitations of traditional 2D models and reducing the need for animal testing. A major challenge in these models is the creation of a functional vascular network, which is critical for maintaining cell viability. In the vast landscape of available approaches and materials, an embedded printing (FRESH) approach, combining GelMA as support bath and Pluronic as sacrificial ink was selected. This approach aims to create a 3D model with a functional vascular network through the sacrificial removal of Pluronic filament inside the GelMA scaffold, to accurately replicate the tumor microenvironment, contributing to advances in understanding and potentially treating such conditions. The samples were subjected to various tests such as mechanical compression test, gel fraction test and in vitro stability test in order to characterize the model from the point of view of morphology, mechanics and in vitro stability in aqueous solution; and confirm their conformity to the mimicked tissue. A bioreactor was designed to perform dynamic culture on the fabricated samples. The geometry (two-channels geometry) chosen to simulate the vascular network within the model is not suitable for mimicking blood microcirculation, due to the larger size of the channels (d = 600 to 800 μm). The size of the channels positively affects fluid uptake within the entire scaffold as shown from the in vitro stability tests where the swelling is faster due to the presence of the channels; it is showed that it also makes the cross-linking of the material more efficient, compared with GelMA bulk and models with simpler integrated geometries. It can, moreover, be concluded how, compared to the bulk model, the channel does not affect the stability of the samples since they are both fully degraded at 21 days. Furthermore, the study showed that the elastic modulus and stiffness of hydrogel, respectively of 5,2 ± 0,8 kPa and 25,5 ± 2,1, were not able to mimic tumor adipose tissue but can mimic the mechanical properties of physiological adipose tissue. Accordingly, based on the results obtained, the 3D in vitro scaffold-based model shows potentiality for mimicking physiological adipose tissue, with the possibility of applying the designed bioreactor to simulate the in vivo microenvironment more accurately.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Lombardo_Marras_thesis_01.pdf
non accessibile
Dimensione
12.26 MB
Formato
Adobe PDF
|
12.26 MB | Adobe PDF | Visualizza/Apri |
2024_04_Lombardo_Marras_Executive Summary_02.pdf
non accessibile
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219599