Drug development is a complex and costly process, often taking over a decade to bring a new compound to market. Despite significant advancements, the high attrition rates during clinical trials, particularly in Phase III, remain a challenge, highlighting the need for more efficient pre-clinical testing methods. In response to ethical concerns and limitations associated with traditional animal models, there is a growing interest in alternative approaches such as in vitro models, including Microphysiological Systems (MPSs). Microfluidic devices, such as the True-Tissue-on-Platform (TToP) device developed by the Laboratory of Experimental Micro and Biofluid-Dynamics (µBS Lab) at Politecnico di Milano, offer unique advantages in drug development. However, inadequate oxygenation within these systems can limit their effectiveness. This study aims to assess and enhance oxygenation within the dynamic module of TToP device through a comprehensive fluid-dynamic characterization and the implementation of design solutions. Using a validated simulation protocol, the fluid dynamic within the TToP device was analyzed, fo cusing on the key parameters that affect the oxygenation process, such as permeability, cell metabolism, and inlet medium velocity. Based on this characterization, two approaches to improve oxygenation were proposed and evaluated through both computational simulations and experimental validation. The results demonstrate that the proposed design modifications significantly enhance oxygenation within the device, addressing a critical limitation in current microphysiological systems. By integrating advanced computational modeling with experimental validation, this study provides valuable insights into optimizing oxygenation in cell culture platforms, ultimately advancing their utility in drug development and biomedical research.
Lo sviluppo di farmaci è un processo complesso e costoso, che spesso richiede oltre un decennio per portare un nuovo composto sul mercato. Nonostante siano stati raggiungi progressi significativi, gli alti tassi di fallimento durante gli studi clinici, in particolare nella Fase III, rimangono una sfida, evidenziando la necessità di metodi di test preclinici più efficienti. In risposta a preoccupazioni etiche e limitazioni associate ai tradizionali modelli animali, c’è un crescente interesse verso approcci alternativi come i modelli in vitro, tra cui i Sistemi Microfisiologici (MPSs). I dispositivi microfisiologici, come il dispositivo True-Tissue-on-Platform (TToP) sviluppato dal Laboratorio di Micro e Biofluidodinamica Sperimentale (µBS Lab) del Politecnico di Milano, offrono vantaggi unici nello sviluppo di farmaci. Tuttavia, un’ossigenazione inadeguata all’interno di questi sistemi può limitarne l’efficacia. Questo studio mira a valutare e migliorare l’ossigenazione all’interno del modulo dinamico del dispositivo TToP attraverso una caratterizzazione fluido-dinamica e l’implementazione di soluzioni progettuali alternative. Utilizzando un protocollo di simulazione precedentemente validato, è stata analizzata la dinamica dei fluidi all’interno del dispositivo TToP, concentrandosi sui parametri chiave che influenzano il processo di ossigenazione, come la permeabilità dei materiali impiegati, il metabolismo cellulare e la velocità del mezzo di cultura. Sulla base di questa caratterizzazione, sono state pro posti e valutati due approcci per migliorare l’ossigenazione, sia tramite un’analisi in silico che tramite convalida sperimentale. I risultati dimostrano che le modifiche di progettazione proposte migliorano significativamente l’ossigenazione all’interno del dispositivo, risolvendo una limitazione critica dei sistemi micro e milli-fluidici attuali. Integrando una analisi computazionale avanzata con convalida sperimentale, questo studio fornisce preziosi spunti per ottimizzare l’ossigenazione nelle piattaforme di coltura cellulare, migliorandone l’utilità nello sviluppo di farmaci e nella ricerca biomedica.
Improvement of the oxygenation process in a dynamic microphysiological system through computational analysis
Crespi, Dalila
2022/2023
Abstract
Drug development is a complex and costly process, often taking over a decade to bring a new compound to market. Despite significant advancements, the high attrition rates during clinical trials, particularly in Phase III, remain a challenge, highlighting the need for more efficient pre-clinical testing methods. In response to ethical concerns and limitations associated with traditional animal models, there is a growing interest in alternative approaches such as in vitro models, including Microphysiological Systems (MPSs). Microfluidic devices, such as the True-Tissue-on-Platform (TToP) device developed by the Laboratory of Experimental Micro and Biofluid-Dynamics (µBS Lab) at Politecnico di Milano, offer unique advantages in drug development. However, inadequate oxygenation within these systems can limit their effectiveness. This study aims to assess and enhance oxygenation within the dynamic module of TToP device through a comprehensive fluid-dynamic characterization and the implementation of design solutions. Using a validated simulation protocol, the fluid dynamic within the TToP device was analyzed, fo cusing on the key parameters that affect the oxygenation process, such as permeability, cell metabolism, and inlet medium velocity. Based on this characterization, two approaches to improve oxygenation were proposed and evaluated through both computational simulations and experimental validation. The results demonstrate that the proposed design modifications significantly enhance oxygenation within the device, addressing a critical limitation in current microphysiological systems. By integrating advanced computational modeling with experimental validation, this study provides valuable insights into optimizing oxygenation in cell culture platforms, ultimately advancing their utility in drug development and biomedical research.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Crespi_Tesi.pdf
solo utenti autorizzati dal 20/03/2025
Descrizione: Thesis
Dimensione
27.25 MB
Formato
Adobe PDF
|
27.25 MB | Adobe PDF | Visualizza/Apri |
2024_04_Crespi_Executive summary.pdf
solo utenti autorizzati dal 20/03/2025
Descrizione: Executive summary
Dimensione
764.93 kB
Formato
Adobe PDF
|
764.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219621