Glass fiber reinforced polymers (GFRPs) are widely used in Electrical and Electronic Equipment (EEE) applications. The increasing demand for these products has led to growing attention to the issue of electronic waste management (WEEE). Particularly, recycling the plastic fraction poses one of the major challenges due to its complex composition and low economic value; thus, a comprehensive investigation is essential to evaluate its recycling potential. Although current research focuses on chemical and thermal recycling methods, mechanical recycling is more commonly used due to its technological maturity and lower cost. In collaboration with ABB, this study aims to investigate the mechanical, thermal, and electrical properties of mechanically recycled GFRP to assess their suitability for integration with virgin materials. The materials under study are polyamide 6,6 and polycarbonate reinforced with glass fibers. Material characterization includes both chemical analysis through Fourier-transform infrared spectroscopy (FT-IR) and thermal analysis through differential scanning calorimetry (DSC) and melt flow index (MFI) measurements for both virgin and recycled materials. Performance investigations include standardized mechanical, electrical, and thermal tests. Differences in sample flexural strength are determined using the three-point bending test. Additionally, other significant mechanical parameters such as Rockwell hardness, Charpy impact resistance, and fiber length distribution are determined. Electrical safety is confirmed by the Comparative Tracking Index (CTI) test, while fire safety is evaluated with UL-94 and glow-wire tests. The results suggest that mechanically recycled composites, when properly mixed with virgin pellets, exhibit satisfactory performance in the specified tests. However, fully recycled samples undergo a significant reduction in mechanical properties, losing 40-60% of flexural strength after the third recycling cycle. The observed decrease in strength values aligns with the reduction in glass fiber length. The findings of this study contribute to GFRP recycling research by providing valuable insights into the potential applications and limitations of mechanically recycled materials.
I materiali compositi a matrice polimerica rinforzati con fibre di vetro (GFRP) trovano ampio impiego nelle applicazioni delle apparecchiature elettriche ed elettroniche. Il costante incremento della domanda di tali prodotti ha condotto a una crescente attenzione al problema della gestione dei rifiuti elettronici (RAEE). In particolare, la gestione della frazione plastica rappresenta una delle maggiori sfide a causa della sua complessa composizione e basso valore economico; è quindi essenziale un'indagine completa per valutarne il potenziale di riciclaggio. Sebbene la ricerca attuale si concentri sui metodi di riciclaggio chimico e termico, il riciclaggio meccanico è più comunemente utilizzato per la sua maturità tecnologica e ridotto costo. In collaborazione con ABB, questo studio ha come obbiettivo lo studio delle proprietà meccaniche, termiche, ed elettriche di GFRP riciclati meccanicamente al fine di valutarne l'idoneità all'integrazione con materiali vergini. I materiali oggetto dello studio sono poliammide 6,6 e policarbonato rinforzati con fibre di vetro. La caratterizzazione dei materiali comprende sia l'analisi chimica attraverso la spettroscopia infrarossa con trasformata di Fourier (FT-IR) sia l'analisi termica attraverso calorimetria differenziale a scansione (DSC) e misurazioni dell’indice di fluidità (MFI). Le differenze nella resistenza alla flessione dei campioni sono state determinate utilizzando il test di flessione a tre punti. Inoltre, vengono determinati altri parametri significativi dal punto di vista meccanico, come la durezza Rockwell, la resistenza all'impatto Charpy e la distribuzione della lunghezza delle fibre. La sicurezza elettrica è confermata dal test Comparative Tracking Index (CTI), mentre la sicurezza antincendio è valutata con i test UL-94 e glow-wire. I risultati suggeriscono che i compositi riciclati meccanicamente, se opportunamente miscelati con granuli vergini, mostrano prestazioni soddisfacenti nei test specificati. Tuttavia, i campioni completamente riciclati subiscono una notevole riduzione delle proprietà meccaniche, perdendo il 40-60% della resistenza alla flessione al terzo ciclo di riciclaggio. La diminuzione dei valori di resistenza osservata è in linea con la riduzione della lunghezza della fibra di vetro. I risultati di questo studio contribuiscono alla ricerca sul riciclaggio di GFRP fornendo preziose indicazioni sulle potenziali applicazioni e sui limiti dei materiali riciclati meccanicamente.
Investigating the viability of post-industrial recycled glass fiber reinforced plastics for electrical applications: a comprehensive analysis of material properties
Doganer, Irem Cemre
2023/2024
Abstract
Glass fiber reinforced polymers (GFRPs) are widely used in Electrical and Electronic Equipment (EEE) applications. The increasing demand for these products has led to growing attention to the issue of electronic waste management (WEEE). Particularly, recycling the plastic fraction poses one of the major challenges due to its complex composition and low economic value; thus, a comprehensive investigation is essential to evaluate its recycling potential. Although current research focuses on chemical and thermal recycling methods, mechanical recycling is more commonly used due to its technological maturity and lower cost. In collaboration with ABB, this study aims to investigate the mechanical, thermal, and electrical properties of mechanically recycled GFRP to assess their suitability for integration with virgin materials. The materials under study are polyamide 6,6 and polycarbonate reinforced with glass fibers. Material characterization includes both chemical analysis through Fourier-transform infrared spectroscopy (FT-IR) and thermal analysis through differential scanning calorimetry (DSC) and melt flow index (MFI) measurements for both virgin and recycled materials. Performance investigations include standardized mechanical, electrical, and thermal tests. Differences in sample flexural strength are determined using the three-point bending test. Additionally, other significant mechanical parameters such as Rockwell hardness, Charpy impact resistance, and fiber length distribution are determined. Electrical safety is confirmed by the Comparative Tracking Index (CTI) test, while fire safety is evaluated with UL-94 and glow-wire tests. The results suggest that mechanically recycled composites, when properly mixed with virgin pellets, exhibit satisfactory performance in the specified tests. However, fully recycled samples undergo a significant reduction in mechanical properties, losing 40-60% of flexural strength after the third recycling cycle. The observed decrease in strength values aligns with the reduction in glass fiber length. The findings of this study contribute to GFRP recycling research by providing valuable insights into the potential applications and limitations of mechanically recycled materials.File | Dimensione | Formato | |
---|---|---|---|
2024_4_Doganer_MasterThesis_01.pdf
non accessibile
Descrizione: Master Thesis
Dimensione
8.16 MB
Formato
Adobe PDF
|
8.16 MB | Adobe PDF | Visualizza/Apri |
2024_4_Doganer_ExecutiveSummary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/219665